scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Can Copper Nanostructures Sustain High-Quality Plasmons?

TL;DR: In this paper, the authors demonstrate vis-IR plasmons in long copper nanowires (NWs) with quality factors that exceed a value of 60, as determined by spatially resolved, high-resolution electron energy-loss spectroscopy (EELS) measurements.
Abstract: Silver is considered to be the king among plasmonic materials because it features low inelastic absorption in the visible and infrared (vis-IR) spectral regions compared to other metals. In contrast, copper is commonly regarded as being too lossy for plasmonic applications. Here, we experimentally demonstrate vis-IR plasmons in long copper nanowires (NWs) with quality factors that exceed a value of 60, as determined by spatially resolved, high-resolution electron energy-loss spectroscopy (EELS) measurements. We explain this counterintuitive result by the fact that plasmons in these metal wires have most of their electromagnetic energy outside the metal, and thus, they are less sensitive to inelastic losses in the material. We present an extensive set of data acquired on long silver and copper NWs of varying diameters supporting this conclusion and further allowing us to understand the relative roles played by radiative and nonradiative losses in plasmons that span a wide range of energies down to $<20\,$meV. At such small plasmon energies, thermal population of these modes becomes significant enough to enable the observation of electron energy gains associated with plasmon absorption events. Our results support the use of copper as an attractive cheap and abundant material platform for high quality plasmons in elongated nanostructures.
Citations
More filters
Journal ArticleDOI
TL;DR: Free electron beams such as those employed in electron microscopes have evolved into powerful tools to investigate photonic nanostructures with an unrivaled combination of spatial and spectral preciseness as discussed by the authors.
Abstract: Free electron beams such as those employed in electron microscopes have evolved into powerful tools to investigate photonic nanostructures with an unrivaled combination of spatial and spectral prec...

88 citations

Journal ArticleDOI
TL;DR: In this paper , the authors highlight the roadmap of important events and major bottlenecks in plasmonic photocatalysis, along with highlighting a few probable solutions for achieving the desired targets.
Abstract: The exceptionally large charge‐carrier density in photoexcited plasmonic nanoparticles (NPs) can be used for the making and breaking of high‐energy chemical bonds, which forms the basis of plasmonic photocatalysis. This review showcases the roadmap of important events and major bottlenecks in plasmonic photocatalysis, along with highlighting a few probable solutions for achieving the desired targets. The review starts with a discussion on various excitation and relaxation pathways, followed by the section on initial use of plasmons in enhancing the photocatalytic properties of semiconductor materials. Next, the sole use of plasmonic NPs in driving useful and industrially relevant chemical transformations is discussed. This is followed by a critical assessment of various challenges and opportunities in the area, along with a discussion on emerging experiments capable of overcoming these challenges. Decades of research have provided a clear understanding on charge generation and decay processes in plasmonic NPs. However, achieving an efficient separation and utilization of charge carriers is still a roadblock in realizing the full potential of plasmonic NPs in catalysis. In short, doing chemistry with plasmons is attractive; but it is high time to develop strategies that can quantitatively utilize the charge carriers for driving chemical transformations in a selective and efficient way.

17 citations

Journal ArticleDOI
TL;DR: In this article , the authors discuss phonon mapping capabilities in real and reciprocal space, and the localized phonon response near nano-/atomic-scale structural features, and survey the progress of aloof spectroscopy in studying vibrations in organic materials and applications in measuring local temperature and photonic density of states in single nanostructures using phonon scattering.
Abstract: Nowadays, sub-50 meV atom-wide electron probes are routinely produced for electron energy loss spectroscopy in transmission electron microscopes due to monochromator technology advances. We review how gradual improvements in energy resolution enabled the study of very low-energy excitations such as lattice phonons, molecular vibrations, infrared plasmons and strongly coupled hybrid modes in nanomaterials. Starting with the theoretical framework needed to treat inelastic electron scattering from phonons in solids, we illustrate contributions in detecting optical surface phonons in photonic structures. We discuss phonon mapping capabilities in real and reciprocal space, and the localized phonon response near nano-/atomic-scale structural features. We also survey the progress of aloof spectroscopy in studying vibrations in organic materials and applications in measuring local temperature and photonic density of states in single nanostructures using phonon scattering. We then turn towards studies on infrared plasmons in metals and semiconductors. Spectroscopy analyses now extend towards probing extremely complex broadband platforms, the effects of defects and nanogaps, and some far-reaching investigations towards uncovering plasmon lifetime and 3D photonic density of states. In doped semiconductors, we review research on the use of the electron probe to correlate local doping concentration and atomic-scale defects with the plasmonic response. Finally, we discuss advances in studying strong coupling phenomena in plasmon-exciton and plasmon-phonon systems. Overall, the wealth of information gained extends our knowledge about nanomaterial properties and elementary excitations, illustrating the powerful capabilities of high-energy resolution scanning transmission electron microscopy-electron energy loss spectrometry.

11 citations

Posted Content
TL;DR: In this paper, the interaction between whispering gallery modes and the MNP surface plasmons with nanometric spatial resolution was studied by using electron-beam spectroscopies in a scanning transmission electron microscope.
Abstract: Whispering gallery mode resonators (WGMRs) trap light over many optical periods using total internal reflection. Thereby, they host multiple narrowband circulating modes that find applications in quantum electrodynamics, optomechanics, sensing and lasing. The spherical symmetry and low field leakage of dielectric microspheres make it difficult to probe their high-quality optical modes using far-field radiation. However, local field enhancement from metallic nanoparticles (MNPs) placed at the edge of the resonators can interface the optical far-field and the bounded cavity modes. In this work, we study the interaction between whispering gallery modes and the MNP surface plasmons with nanometric spatial resolution by using electron-beam spectroscopies in a scanning transmission electron microscope. We show that gallery modes are induced over the spectral range of the dipolar plasmons of the nanoparticle. Additionally, we explore the dependence of the transverse electric and transverse magnetic polarization of the induced gallery mode on the induced dipole moment of the MNP. Our study demonstrates a viable mechanism to effectively excite high-quality-factor whispering gallery modes and holds potential for applications in optical sensing and light manipulation.

10 citations

Journal ArticleDOI
TL;DR: In this article , the authors proposed a scheme to generate pure entanglement between designated optical-cavity excitations and separable free-electron states by shape the electron wave function profile to select the accessible cavity modes and simultaneously associate them with targeted electron scattering directions.
Abstract: The inelastic interaction between flying particles and optical nanocavities gives rise to entangled states in which some excitations of the latter are paired with momentum changes in the former. Specifically, free-electron entanglement with nanocavity modes opens appealing opportunities associated with the strong interaction capabilities of the electrons. However, the achievable degree of entanglement is currently limited by the lack of control over the resulting state mixtures. Here, we propose a scheme to generate pure entanglement between designated optical-cavity excitations and separable free-electron states. We shape the electron wave function profile to select the accessible cavity modes and simultaneously associate them with targeted electron scattering directions. This concept is exemplified through theoretical calculations of free-electron entanglement with degenerate and nondegenerate plasmon modes in silver nanoparticles and atomic vibrations in an inorganic molecule. The generated entanglement can be further propagated through its electron component to extend quantum interactions beyond existing protocols.

10 citations

References
More filters
Book
01 Jan 1962

24,003 citations

Journal ArticleDOI
TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Abstract: The optical constants $n$ and $k$ were obtained for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV. The film-thickness range was 185-500 \AA{}. Three optical measurements were inverted to obtain the film thickness $d$ as well as $n$ and $k$. The estimated error in $d$ was \ifmmode\pm\else\textpm\fi{} 2 \AA{}, and that in $n$, $k$ was less than 0.02 over most of the spectral range. The results in the film-thickness range 250-500 \AA{} were independent of thickness, and were unchanged after vacuum annealing or aging in air. The free-electron optical effective masses and relaxation times derived from the results in the near infrared agree satisfactorily with previous values. The interband contribution to the imaginary part of the dielectric constant was obtained by subtracting the free-electron contribution. Some recent theoretical calculations are compared with the results for copper and gold. In addition, some other recent experiments are critically compared with our results.

17,509 citations

Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Journal ArticleDOI
TL;DR: This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size and introduces a new form of L SPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances.
Abstract: Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.

5,444 citations

Journal ArticleDOI
TL;DR: How the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications is emphasized.
Abstract: Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, takin...

3,617 citations