scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy.

TL;DR: Molecular assays of human brain samples indicated that MAGE-A12 was expressed in human brain, possibly the initiating event of a TCR-mediated inflammatory response that resulted in neuronal cell destruction and raises caution for clinical applications targeting Mage-A family members with highly active immunotherapies.
Abstract: Nine cancer patients were treated with adoptive cell therapy using autologous anti-MAGE-A3 T-cell receptors (TCR)-engineered T cells. Five patients experienced clinical regression of their cancers including 2 on-going responders. Beginning 1-2 days postinfusion, 3 patients (#'s 5, 7, and 8) experienced mental status changes, and 2 patients (5 and 8) lapsed into comas and subsequently died. Magnetic resonance imagining analysis of patients 5 and 8 demonstrated periventricular leukomalacia, and examination of their brains at autopsy revealed necrotizing leukoencephalopathy with extensive white matter defects associated with infiltration of CD3(+)/CD8(+) T cells. Patient 7, developed Parkinson-like symptoms, which resolved over 4 weeks and fully recovered. Immunohistochemical staining of patient and normal brain samples demonstrated rare positively staining neurons with an antibody that recognizes multiple MAGE-A family members. The TCR used in this study recognized epitopes in MAGE-A3/A9/A12. Molecular assays of human brain samples using real-time quantitative-polymerase chain reaction, Nanostring quantitation, and deep-sequencing indicated that MAGE-A12 was expressed in human brain (and possibly MAGE-A1, MAGE-A8, and MAGE-A9). This previously unrecognized expression of MAGE-A12 in human brain was possibly the initiating event of a TCR-mediated inflammatory response that resulted in neuronal cell destruction and raises caution for clinical applications targeting MAGE-A family members with highly active immunotherapies.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
10 Jul 2014-Blood
TL;DR: A novel system to grade the severity of CRS in individual patients and a treatment algorithm for management of C RS based on severity is presented, to maximize the chance for therapeutic benefit from the immunotherapy while minimizing the risk for life threatening complications of the syndrome.

2,025 citations

Journal ArticleDOI
03 Apr 2015-Science
TL;DR: The ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment.
Abstract: Adoptive cell therapy (ACT) is a highly personalized cancer therapy that involves administration to the cancer-bearing host of immune cells with direct anticancer activity. ACT using naturally occurring tumor-reactive lymphocytes has mediated durable, complete regressions in patients with melanoma, probably by targeting somatic mutations exclusive to each cancer. These results have expanded the reach of ACT to the treatment of common epithelial cancers. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment.

1,895 citations

Journal ArticleDOI
23 Mar 2018-Science
TL;DR: Opportunities and challenges for entering mainstream oncology that presently face the CAR T field are described, with a focus on the challenges that have emerged over the past several years.
Abstract: Adoptive T cell transfer (ACT) is a new area of transfusion medicine involving the infusion of lymphocytes to mediate antitumor, antiviral, or anti-inflammatory effects. The field has rapidly advanced from a promising form of immuno-oncology in preclinical models to the recent commercial approvals of chimeric antigen receptor (CAR) T cells to treat leukemia and lymphoma. This Review describes opportunities and challenges for entering mainstream oncology that presently face the CAR T field, with a focus on the challenges that have emerged over the past several years.

1,684 citations

Journal ArticleDOI
08 Aug 2013-Blood
TL;DR: Clinical testing of engineered T cells expressing an affinity-enhanced TCR against HLA-A*01-restricted MAGE-A3 demonstrated that TCR-engineered T cells can have serious and not readily predictable off-target and organ-specific toxicities and highlight the need for improved methods to define the specificity of engineeredTCRs.

952 citations


Cites background from "Cancer regression and neurological ..."

  • ...MAGE-A3 may be a particularly difficult target because another group using an independently derived TCR that was specific for MAGE-A3 peptides presented on HLAA*02 has reported severe on-target off-tumor toxicity.(25) In that study, neurologic toxicity was observed because of the unexpected expression of other members of the MAGE cancer-testis family in the central nervous system....

    [...]

Journal ArticleDOI
30 Jun 2016-Blood
TL;DR: The toxicities caused by CAR T cells are described and the published approaches used to manage toxicities are reviewed, with guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy presented.

942 citations


Cites background from "Cancer regression and neurological ..."

  • ...This toxicity has not been documented in clinical trials ofCARs, but it has been observed in clinical trials of T cells genetically modified to express T-cell receptors.(33,52,53)...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A model by which a combined assessment of all existing lesions, characterized by target lesions and nontarget lesions, is used to extrapolate an overall response to treatment is proposed, which is largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines.
Abstract: Anticancer cytotoxic agents go through a process by which their antitumor activity-on the basis of the amount of tumor shrinkage they could generate-has been investigated. In the late 1970s, the International Union Against Cancer and the World Health Organization introduced specific criteria for the codification of tumor response evaluation. In 1994, several organizations involved in clinical research combined forces to tackle the review of these criteria on the basis of the experience and knowledge acquired since then. After several years of intensive discussions, a new set of guidelines is ready that will supersede the former criteria. In parallel to this initiative, one of the participating groups developed a model by which response rates could be derived from unidimensional measurement of tumor lesions instead of the usual bidimensional approach. This new concept has been largely validated by the Response Evaluation Criteria in Solid Tumors Group and integrated into the present guidelines. This special article also provides some philosophic background to clarify the various purposes of response evaluation. It proposes a model by which a combined assessment of all existing lesions, characterized by target lesions (to be measured) and nontarget lesions, is used to extrapolate an overall response to treatment. Methods of assessing tumor lesions are better codified, briefly within the guidelines and in more detail in Appendix I. All other aspects of response evaluation have been discussed, reviewed, and amended whenever appropriate.

14,926 citations

Journal ArticleDOI
26 Sep 2008-Science
TL;DR: Recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival.
Abstract: Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.

5,250 citations

Journal ArticleDOI
13 Dec 1991-Science
TL;DR: In this paper, a gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line, which belongs to a family of at least three genes.
Abstract: Many human melanoma tumors express antigens that are recognized in vitro by cytolytic T lymphocytes (CTLs) derived from the tumor-bearing patient. A gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line. This gene shows no similarity to known sequences and belongs to a family of at least three genes. It is expressed by the original melanoma cells, other melanoma cell lines, and by some tumor cells of other histological types. No expression was observed in a panel of normal tissues. Antigen MZ2-E appears to be presented by HLA-A1; anti-MZ2-E CTLs of the original patient recognized two melanoma cell lines of other HLA-A1 patients that expressed the gene. Thus, precisely targeted immunotherapy directed against antigen MZ2-E could be provided to individuals identified by HLA typing and analysis of the RNA of a small tumor sample.

3,497 citations

Journal ArticleDOI
TL;DR: A low dose of autologous chimeric antigen receptor-modified T cells reinfused into a patient with refractory chronic lymphocytic leukemia expanded to a level that was more than 1000 times as high as the initial engraftment level in vivo, with delayed development of the tumor lysis syndrome and with complete remission.
Abstract: We designed a lentiviral vector expressing a chimeric antigen receptor with specificity for the B-cell antigen CD19, coupled with CD137 (a costimulatory receptor in T cells [4-1BB]) and CD3-zeta (a signal-transduction component of the T-cell antigen receptor) signaling domains. A low dose (approximately 1.5×10(5) cells per kilogram of body weight) of autologous chimeric antigen receptor-modified T cells reinfused into a patient with refractory chronic lymphocytic leukemia (CLL) expanded to a level that was more than 1000 times as high as the initial engraftment level in vivo, with delayed development of the tumor lysis syndrome and with complete remission. Apart from the tumor lysis syndrome, the only other grade 3/4 toxic effect related to chimeric antigen receptor T cells was lymphopenia. Engineered cells persisted at high levels for 6 months in the blood and bone marrow and continued to express the chimeric antigen receptor. A specific immune response was detected in the bone marrow, accompanied by loss of normal B cells and leukemia cells that express CD19. Remission was ongoing 10 months after treatment. Hypogammaglobulinemia was an expected chronic toxic effect.

3,204 citations

Journal ArticleDOI
06 Oct 2006-Science
TL;DR: The ability to specifically confer tumor recognition by autologous lymphocytes from peripheral blood by using a retrovirus that encodes a T cell receptor is reported.
Abstract: Through the adoptive transfer of lymphocytes after host immunodepletion, it is possible to mediate objective cancer regression in human patients with metastatic melanoma. However, the generation of tumor-specific T cells in this mode of immunotherapy is often limiting. Here we report the ability to specifically confer tumor recognition by autologous lymphocytes from peripheral blood by using a retrovirus that encodes a T cell receptor. Adoptive transfer of these transduced cells in 15 patients resulted in durable engraftment at levels exceeding 10% of peripheral blood lymphocytes for at least 2 months after the infusion. We observed high sustained levels of circulating, engineered cells at 1 year after infusion in two patients who both demonstrated objective regression of metastatic melanoma lesions. This study suggests the therapeutic potential of genetically engineered cells for the biologic therapy of cancer.

2,614 citations


Additional excerpts

  • ...ESO-1 TCR, ALVAC, IL-2 41 1 PR (5) None...

    [...]

Related Papers (5)