scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon Allotropes as ITO Electrode Replacement Materials in Liquid Crystal Devices

10 Dec 2020-Vol. 6, Iss: 4, pp 80
TL;DR: In this article, the main contenders for new electrode technologies are discussed with an emphasis placed on carbon-based materials for liquid crystal displays, including composite approaches, and the advantages and disadvantages of ITO-free technologies with application examples given.
Abstract: Indium tin oxide (ITO)-free optoelectronic devices have been discussed for a number of years in the light of a possible indium shortage as demand rises. In particular, this is due to the largely increased number of flat panel displays and especially liquid crystal displays (LCDs) being produced for home entertainment TV and mobile technologies. While a shortage of primary indium seems far on the horizon, nevertheless, recycling has become an important issue, as has the development of ITO-free electrode materials, especially for flexible liquid crystal devices. The main contenders for new electrode technologies are discussed with an emphasis placed on carbon-based materials for LCDs, including composite approaches. At present, these already fulfil the technical specifications demanded from ITO with respect to transmittance and sheet resistance, albeit not in relation to cost and large-scale production. Advantages and disadvantages of ITO-free technologies are discussed, with application examples given. An outlook into the future suggests no immediate transition to carbon-based electrodes in the area of LCDs, while this may change in the future once flexible displays and environmentally friendly smart window solutions or energy harvesting building coverings become available.
Citations
More filters
Journal ArticleDOI
15 Feb 2021
TL;DR: In this paper, an overview of the ionic effects observed in liquid crystals doped with nanomaterials is provided, with an emphasis on the role of ionic effect in such systems.
Abstract: A great variety of tunable multifunctional materials can be produced by combining nanoparticles and liquid crystals. Typically, the tunability of such soft nanocomposites is achieved via external electric fields resulting in the field-induced reorientation of liquid crystals. This reorientation can be altered by ions normally present in liquid crystals in small quantities. In addition, nanomaterials dispersed in liquid crystals can also affect the behavior of ions. Therefore, an understanding of ionic phenomena in liquid crystals doped with nanoparticles is essential for future advances in liquid crystal-aided nanoscience and nanotechnology. This paper provides an overview of the ionic effects observed in liquid crystals doped with nanomaterials. An introduction to liquid crystals is followed by a brief overview of nanomaterials in liquid crystals. After giving a basic description of ions in liquid crystals and experimental methods to measure them, a wide range of ionic phenomena in liquid crystals doped with different types of nanomaterials is discussed. After that, both existing and emerging applications of tunable soft materials made of liquid crystals and nanodopants are presented with an emphasis on the role of ionic effects in such systems. Finally, the discussion of unsolved problems and future research directions completes the review.

27 citations

Journal Article
TL;DR: The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.
Abstract: Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

22 citations

Journal ArticleDOI
TL;DR: A review of the current literature dealing with noble metals' nanoparticles and their effects on plants and associated microorganisms can be found in this paper , where prospective nanomaterials developed as nanofertilizers and nanopesticides are introduced.

19 citations

Journal ArticleDOI
TL;DR: In this paper , the polarization properties of the dual circularly polarized lights reflected from ITO films were analyzed by rotating the linear polarizer and quarter-wave plate and a slim beam profiler.
Abstract: Indium tin oxide (ITO) is widely used in optoelectronic devices due to its excellent optical and electrical properties. The real-time characterization of the ITO surface under electric and thermal fields plays an important role in determining its performance. The Goos–Hänchen (GH) and Imbert–Fedorov (IF) shifts and polarization properties of the dual circularly polarized lights reflected from ITO films can be used to describe its features. The dual circularly polarized lights, right circularly polarized (RCP, S 3 ≈+1) and left circularly polarized (LCP, S 3 ≈−1) lights, are obtained by rotating the linear polarizer and quarter-wave plate. The polarization properties and the lateral shifts of the RCP and LCP lights were studied by a polarimeter and a slim beam profiler. The results show that the polarization properties of the dual circularly polarized lights are mainly affected by temperature. The degree of the polarization properties of the RCP and LCP lights changed from 97.85% to 97.40%, and from 98.40 % to 83.50%, respectively. The reflectivity of the RCP and LCP lights changed from 42.19% to 40.37%, and from 43.80% to 0.80%, respectively. The GH and IF shifts of the RCP light are 156.50 µm and186.00 µm, respectively. The GH and IF shifts of the LCP light are 233.00 µm and 257.00 µm, respectively. The ITO film has more effect on the LCP light than that of the RCP light due to its strong ITO film (400) plane.
Journal ArticleDOI
TL;DR: The theory and utility of dielectrophoresis (DEP) and the advantages of using carbon microelectrodes for this purpose are discussed and the literature relevant to the use of CarbonDEP for bioparticle manipulation under the scope of the ASSURED criteria is critically reviewed.
Abstract: Extreme point-of-care refers to medical testing in unfavorable conditions characterized by a lack of primary resources or infrastructure. As witnessed in the recent past, considerable interest in developing devices and technologies exists for extreme point-of-care applications, for which the World Health Organization has introduced a set of encouraging and regulating guidelines. These are referred to as the ASSURED criteria, an acronym for Affordable (A), Sensitive (S), Specific (S), User friendly (U), Rapid and Robust (R), Equipment-free (E), and Delivered (D). However, the current extreme point of care devices may require an intermediate sample preparation step for performing complex biomedical analysis, including the diagnosis of rare-cell diseases and early-stage detection of sepsis. This article assesses the potential of carbon-electrode dielectrophoresis (CarbonDEP) for sample preparation competent in extreme point-of-care, following the ASSURED criteria. We first discuss the theory and utility of dielectrophoresis (DEP) and the advantages of using carbon microelectrodes for this purpose. We then critically review the literature relevant to the use of CarbonDEP for bioparticle manipulation under the scope of the ASSURED criteria. Lastly, we offer a perspective on the roadmap needed to strengthen the use of CarbonDEP in extreme point-of-care applications.
References
More filters
Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Abstract: The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

7,709 citations

Journal ArticleDOI
TL;DR: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated and show high chemical and thermal stabilities and an ultrasmooth surface with tunable wettability.
Abstract: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated. These graphene films are fabricated from exfoliated graphite oxide, followed by thermal reduction. The obtained films exhibit a high conductivity of 550 S/cm and a transparency of more than 70% over 1000−3000 nm. Furthermore, they show high chemical and thermal stabilities as well as an ultrasmooth surface with tunable wettability.

4,314 citations

Journal ArticleDOI
TL;DR: A solution-based method is reported that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas, which could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.
Abstract: The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.

4,174 citations