scispace - formally typeset
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

Reads0
Chats0
TLDR
Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract
Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

read more

Citations
More filters
Journal ArticleDOI

A comprehensive review on emerging artificial neuromorphic devices

TL;DR: A comprehensive review on emerging artificial neuromorphic devices and their applications is offered, showing that anion/cation migration-based memristive devices, phase change, and spintronic synapses have been quite mature and possess excellent stability as a memory device, yet they still suffer from challenges in weight updating linearity and symmetry.
Journal ArticleDOI

Ceramic matrix composites containing carbon nanotubes

TL;DR: In this article, the current status of the research and development of CNT-loaded ceramic matrix composite (CMC) materials is reviewed, with particular reference to brittle matrices and an overview of the processing techniques developed to optimise dispersion quality, interfaces, and density.
Journal ArticleDOI

Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing

TL;DR: In this paper, highly conductive and stretchable yarns based on electrospun thermoplastic polyurethane (TPU) fiber yarns successively decorated with multi-walled carbon nanotubes (MWNTs) and single-weled carbon nanotsubes (SWNTs), were prepared by a combined electrospinning, ultrasonication adsorbing, and bobbin winder technique.
Journal ArticleDOI

Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes

TL;DR: In this paper, the effect of carbon nanotube microstructure on wave dispersion was investigated in a wide frequency range up to terahertz region, and the non-local elastic cylindrical shell theory provided a better prediction of the dispersion relationships than the classical shell theory when the wavenumber is large enough for the carbon nano-tubes to have a significant influence.
Journal ArticleDOI

Nonlocal elasticity theory for vibration of nanoplates

TL;DR: In this paper, the nonlocal differential constitutive relations of Eringen have been used to solve the governing equations for simply supported boundary conditions for the analysis of double layered nanoplates.
References
More filters
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Journal ArticleDOI

Room-temperature transistor based on a single carbon nanotube

TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Journal ArticleDOI

Crystalline Ropes of Metallic Carbon Nanotubes

TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Journal ArticleDOI

Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes

TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Journal ArticleDOI

Thermal transport measurements of individual multiwalled nanotubes.

TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Related Papers (5)