scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

02 Aug 2002-Science (American Association for the Advancement of Science)-Vol. 297, Iss: 5582, pp 787-792
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the role of carbon sources, catalysts and substrates with regard to CCVD synthesis of carbon nanotubes is reviewed in light of latest developments and understandings in the field.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of sonication time on the mechanical properties of multiscale composites, which contain reinforcements at varying scales, were studied, and a combination of Halpin-Tsai equations and woven fiber micromechanics was used in hierarchy to predict the structural properties of multi-scale composites.

364 citations


Cites background or methods from "Carbon Nanotubes--the Route Toward ..."

  • ...The estimated MWCNT diameter, length, and Young’s modulus of 20 nm, 50 lm and 400 GPa were used in the calculation, respectively [2]....

    [...]

  • ...The exceptional physical properties combined with high aspect ratios and low density render carbon nanotubes (CNTs) attractive for a new generation of multifunctional, high-performance engineering composites [1–5]....

    [...]

Journal ArticleDOI
Ying Cui1, Huaxin Gong1, Wang Yujie1, Dewen Li1, Hao Bai1 
TL;DR: A "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods.
Abstract: Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing.

364 citations

Journal ArticleDOI
TL;DR: This work demonstrates the self-assembly of large arrays of aromatic peptide nanotubes using vapour deposition methods and shows that the nanotube arrays can be used to develop high-surface-area electrodes for energy storage applications, highly hydrophobic self-cleaning surfaces and microfluidic chips.
Abstract: The use of bionanostructures in real-world applications will require precise control over biomolecular self-assembly and the ability to scale up production of these materials A significant challenge is to control the formation of large, homogeneous arrays of bionanostructures on macroscopic surfaces Previously, bionanostructure formation has been based on the spontaneous growth of heterogenic populations in bulk solution Here, we demonstrate the self-assembly of large arrays of aromatic peptide nanotubes using vapour deposition methods This approach allows the length and density of the nanotubes to be fine-tuned by carefully controlling the supply of the building blocks from the gas phase Furthermore, we show that the nanotube arrays can be used to develop high-surface-area electrodes for energy storage applications, highly hydrophobic self-cleaning surfaces and microfluidic chips

361 citations

Journal ArticleDOI
TL;DR: It is suggested that materials associated with raw SWCNTs (perhaps metal contaminants) have the potential to affect aquatic life when released into the aquatic environment.
Abstract: The impact of carbon nanotubes (CNTs) on the aquatic environment was investigated by examining the properties of raw CNTs under several environmental conditions and using developing zebrafish (Danio rerio) embryos. The agglomerate size for single-walled CNTs (SWCNTs) was significantly larger at pH 11 or greater and was stable at temperatures from 4 to 40 degrees C and salinities from 0 to 30 ppt. Exposure to SWCNTs induced a significant hatching delay in zebrafish embryos between 52 to 72 h postfertilization (hpf) at concentrations of greater than 120 mg/L, but 99% of the exposed embryos hatched by 75 hpf. Double-walled CNTs also induced a hatching delay at concentrations of greater than 240 mg/L, but carbon black did not affect hatching at the concentrations tested. Molecular and cellular analysis showed that the embryonic development of the exposed embryos up to 96 hpf was not affected at SWCNT concentrations of up to 360 mg/L. Scanning-electron microscopic inspection showed that the size of the pores on the embryo chorion was nanoscaled and that the size of SWCNT agglomerates was microscaled or larger, indicating that the chorion of zebrafish embryos was an effective protective barrier to SWCNT agglomerates. The hatching delay observed in this study likely was induced by the Co and Ni catalysts used in the production of SWCNTs that remained at trace concentrations after purification. This study suggests that materials associated with raw SWCNTs (perhaps metal contaminants) have the potential to affect aquatic life when released into the aquatic environment.

360 citations


Cites background from "Carbon Nanotubes--the Route Toward ..."

  • ...The unique physical and chemical properties of CNTs have raised great expectations regarding their use for numerous applications in medicine, chemistry, electronics, materials, and the environment [2], and many novel discoveries and applications of CNTs have been reported in recent years [2–7]....

    [...]

References
More filters
Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Abstract: Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

5,908 citations

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Abstract: The use of individual molecules as functional electronic devices was first proposed in the 1970s (ref 1) Since then, molecular electronics2,3 has attracted much interest, particularly because it could lead to conceptually new miniaturization strategies in the electronics and computer industry The realization of single-molecule devices has remained challenging, largely owing to difficulties in achieving electrical contact to individual molecules Recent advances in nanotechnology, however, have resulted in electrical measurements on single molecules4,5,6,7 Here we report the fabrication of a field-effect transistor—a three-terminal switching device—that consists of one semiconducting8,9,10 single-wall carbon nanotube11,12 connected to two metal electrodes By applying a voltage to a gate electrode, the nanotube can be switched from a conducting to an insulating state We have previously reported5 similar behaviour for a metallic single-wall carbon nanotube operated at extremely low temperatures The present device, in contrast, operates at room temperature, thereby meeting an important requirement for potential practical applications Electrical measurements on the nanotube transistor indicate that its operation characteristics can be qualitatively described by the semiclassical band-bending models currently used for traditional semiconductor devices The fabrication of the three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics

5,258 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Abstract: The major part of this chapter has already appeared in [1], but because of the length restrictions (in Science), the discussion on why we think this form is given in only brief detail. This chapter goes into more depth to try to answer the questions of why the fullerenes form themselves. This is another example of the very special behavior of carbon. From a chemist’s standpoint, it is carbon’s ability to form multiple bonds that allows it to make these low dimensional forms rather than to produce tetrahedral forms. Carbon can readily accomplish this and it is in the mathematics and physics of the way this universe was put together, that carbon is given this property. One of the consequences of this property is that, if left to its own devices as carbon condenses from the vapor and if the temperature range is just right, above 1000°C, but lower than 1400°C, there is an efficient self-assembly process whose endpoint is C60.

5,215 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Abstract: The Young's modulus, strength, and toughness of nanostructures are important to proposed applications ranging from nanocomposites to probe microscopy, yet there is little direct knowledge of these key mechanical properties. Atomic force microscopy was used to determine the mechanical properties of individual, structurally isolated silicon carbide (SiC) nanorods (NRs) and multiwall carbon nanotubes (MWNTs) that were pinned at one end to molybdenum disulfide surfaces. The bending force was measured versus displacement along the unpinned lengths. The MWNTs were about two times as stiff as the SiC NRs. Continued bending of the SiC NRs ultimately led to fracture, whereas the MWNTs exhibited an interesting elastic buckling process. The strengths of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values. Because of buckling, the ultimate strengths of the stiffer MWNTs were less than those of the SiC NRs, although the MWNTs represent a uniquely tough, energy-absorbing material.

4,627 citations

Journal ArticleDOI
TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Abstract: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is 2 orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 microV/K at room temperature.

3,166 citations