scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

02 Aug 2002-Science (American Association for the Advancement of Science)-Vol. 297, Iss: 5582, pp 787-792
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the adsorption of electroactive methylene blue (MB) dye onto single-walled carbon nanotubes (SWNTs) to form an electrochemically functional nanostructure and its layered nanocomposite is described.
Abstract: This paper describes the adsorption of electroactive methylene blue (MB) dye onto single-walled carbon nanotubes (SWNTs) to form an electrochemically functional nanostructure and its layered nanocomposite. UV−visible and FT-IR spectroscopy and electrochemistry used for characterization of the MB adsorption onto SWNTs reveal that MB essentially interacts with SWNTs through charge-transfer and hydrophobic interactions, leading to the formation of a MB−SWNT adsorptive nanostructure which exhibits distinct electrochemical properties from those of MB adsorbed onto a glassy carbon (GC) electrode. The interactions between MB and the SWNTs are demonstrated to closely associate with the structural properties of the SWNTs by comparing the electrochemical properties of MB adsorbed onto different substrates, i.e., glassy carbon, SWNTs, and SWNTs intentionally sidewall functionalized with hydroxyl groups (SWNT-OHs). The stable adsorption of water-soluble and positively charged MB molecules onto the SWNTs is further de...

325 citations

Journal ArticleDOI
TL;DR: In this paper, single-walled carbon nanotubes (SWNT) were functionalized with polystyrene (PSt) by grafting to and grafting from methods.
Abstract: Single-walled carbon nanotubes (SWNT) were functionalized with polystyrene (PSt) by grafting to and grafting from methods. PSt-N3 with designed molecular weight and narrow molecular weight distribution was synthesized by atom transfer radical polymerization (ATRP) of styrene (St) followed by end group transformation and then added to SWNT. The grafting from functionalization was achieved by ATRP of St using 2-bromopropionate groups immobilized SWNT as initiator. Methyl 2-bromopropionate (MBP) was added as free initiator to control the chain propagation on SWNT during the polymerization. Raman and near-IR spectra show that PSt was covalently attached to the sidewalls of SWNT by the grafting to approach, and the degree of functionalization was about 1 in 48 SWNT carbon atoms as determined by thermogravimetric analyses (TGA). In the grafting from approach, size exclusion chromatography (SEC) results show that the molecular weight of free St increased linearly with St conversion, and the PSt cleaved from the ...

325 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used functionalized, macromolecular single-walled carbon nanotubes (SWNTs) as multicolor Raman labels for highly sensitive, multiplexed protein detection in an arrayed format.
Abstract: The current sensitivity of standard fluorescence-based protein detection limits the use of protein arrays in research and clinical diagnosis. Here, we use functionalized, macromolecular single-walled carbon nanotubes (SWNTs) as multicolor Raman labels for highly sensitive, multiplexed protein detection in an arrayed format. Unlike fluorescence methods, Raman detection benefits from the sharp scattering peaks of SWNTs with minimal background interference, affording a high signal-to-noise ratio needed for ultra-sensitive detection. When combined with surface-enhanced Raman scattering substrates, the strong Raman intensity of SWNT tags affords protein detection sensitivity in sandwich assays down to 1 fM--a three-order-of-magnitude improvement over most reports of fluorescence-based detection. We use SWNT Raman tags to detect human autoantibodies against proteinase 3, a biomarker for the autoimmune disease Wegener's granulomatosis, diluted up to 10(7)-fold in 1% human serum. SWNT Raman tags are not subject to photobleaching or quenching. By conjugating different antibodies to pure (12)C and (13)C SWNT isotopes, we demonstrate multiplexed two-color SWNT Raman-based protein detection.

322 citations


Cites background from "Carbon Nanotubes--the Route Toward ..."

  • ...SWNTs possess enormous Raman scattering cross-sections (∼10 −21 cm 2 sr −1 molecule −1 ), have simple and tunable spectra and are more stable than other organic Raman label...

    [...]

Journal ArticleDOI
TL;DR: In this article, the phase composition of the product and the gas-sensing properties were dependent on the preparation conditions (the presence of surfactant and the ratio of V ZnA c 2 ( 0.50 M ) / V NaOH ( 5.0 M ) ).
Abstract: ZnO sensors were fabricated from ZnO nanorods prepared by a hydrothermal method and their gas-sensing properties were investigated. It was found that the phase composition of the product and the gas-sensing properties were dependent on the preparation conditions (the presence of surfactant and the ratio of V ZnA c 2 ( 0.50 M ) / V NaOH ( 5.0 M ) ). The sensor prepared at a ratio of V ZnA c 2 ( 0.50 M ) / V NaOH ( 5.0 M ) = 1 without any surfactant exhibited the best performance, which was characterized by high response and good selectivity to low concentrations of H2S at room temperature. The sensor also had a high response, high selectivity and short response time to low concentrations of C2H5OH at 350 °C. These characteristics make the sensor to be a promising candidate for practical materials detecting low concentrations of H2S and C2H5OH. Especially, the response to 0.05 ppm H2S attained 1.7 at room temperature.

322 citations

Journal ArticleDOI
TL;DR: This review describes recent developments in the field-effect transistors (FETs) with gate dielectrics of ionic liquids, which have attracted much attention due to their wide electrochemical windows, low vapor pressures, and high chemical and physical stability.
Abstract: Charge carrier control is a key issue in the development of electronic functions of semiconductive materials. Beyond the simple enhancement of conductivity, high charge carrier accumulation can realize various phenomena, such as chemical reaction, phase transition, magnetic ordering, and superconductivity. Electric double layers (EDLs), formed at solid-electrolyte interfaces, induce extremely large electric fields. This results in a high charge carrier accumulation in the solid, much more effectively than solid dielectric materials. In the present review, we describe recent developments in the field-effect transistors (FETs) with gate dielectrics of ionic liquids, which have attracted much attention due to their wide electrochemical windows, low vapor pressures, and high chemical and physical stability. We explain the capacitance effects of ionic liquids, and describe the various combinations of ionic liquids and organic and inorganic semiconductors that are used to achieve such effects as high transistor performance, insulator-metal transitions, superconductivity, and ferromagnetism, in addition to the applications of the ionic-liquid EDL-FETs in logic devices. We discuss the factors controlling the mobility and threshold voltage in these types of FETs, and show the ionic liquid dependence of the transistor performance.

321 citations

References
More filters
Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Abstract: Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

5,908 citations

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Abstract: The use of individual molecules as functional electronic devices was first proposed in the 1970s (ref 1) Since then, molecular electronics2,3 has attracted much interest, particularly because it could lead to conceptually new miniaturization strategies in the electronics and computer industry The realization of single-molecule devices has remained challenging, largely owing to difficulties in achieving electrical contact to individual molecules Recent advances in nanotechnology, however, have resulted in electrical measurements on single molecules4,5,6,7 Here we report the fabrication of a field-effect transistor—a three-terminal switching device—that consists of one semiconducting8,9,10 single-wall carbon nanotube11,12 connected to two metal electrodes By applying a voltage to a gate electrode, the nanotube can be switched from a conducting to an insulating state We have previously reported5 similar behaviour for a metallic single-wall carbon nanotube operated at extremely low temperatures The present device, in contrast, operates at room temperature, thereby meeting an important requirement for potential practical applications Electrical measurements on the nanotube transistor indicate that its operation characteristics can be qualitatively described by the semiclassical band-bending models currently used for traditional semiconductor devices The fabrication of the three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics

5,258 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Abstract: The major part of this chapter has already appeared in [1], but because of the length restrictions (in Science), the discussion on why we think this form is given in only brief detail. This chapter goes into more depth to try to answer the questions of why the fullerenes form themselves. This is another example of the very special behavior of carbon. From a chemist’s standpoint, it is carbon’s ability to form multiple bonds that allows it to make these low dimensional forms rather than to produce tetrahedral forms. Carbon can readily accomplish this and it is in the mathematics and physics of the way this universe was put together, that carbon is given this property. One of the consequences of this property is that, if left to its own devices as carbon condenses from the vapor and if the temperature range is just right, above 1000°C, but lower than 1400°C, there is an efficient self-assembly process whose endpoint is C60.

5,215 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Abstract: The Young's modulus, strength, and toughness of nanostructures are important to proposed applications ranging from nanocomposites to probe microscopy, yet there is little direct knowledge of these key mechanical properties. Atomic force microscopy was used to determine the mechanical properties of individual, structurally isolated silicon carbide (SiC) nanorods (NRs) and multiwall carbon nanotubes (MWNTs) that were pinned at one end to molybdenum disulfide surfaces. The bending force was measured versus displacement along the unpinned lengths. The MWNTs were about two times as stiff as the SiC NRs. Continued bending of the SiC NRs ultimately led to fracture, whereas the MWNTs exhibited an interesting elastic buckling process. The strengths of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values. Because of buckling, the ultimate strengths of the stiffer MWNTs were less than those of the SiC NRs, although the MWNTs represent a uniquely tough, energy-absorbing material.

4,627 citations

Journal ArticleDOI
TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Abstract: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is 2 orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 microV/K at room temperature.

3,166 citations