scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

02 Aug 2002-Science (American Association for the Advancement of Science)-Vol. 297, Iss: 5582, pp 787-792
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.
Citations
More filters
Journal ArticleDOI
27 Jun 2003-Science
TL;DR: The use of a polymerizable ionic liquid as the gelling medium allows for the fabrication of a highly electroconductive polymer/nanotube composite material, which showed a substantial enhancement in dynamic hardness.
Abstract: When mixed with imidazolium ion-based room-temperature ionic liquid, pristine single-walled carbon nanotubes formed gels after being ground. The heavily entangled nanotube bundles were found to untangle within the gel to form much finer bundles. Phase transition and rheological properties suggest that the gels are formed by physical cross-linking of the nanotube bundles, mediated by local molecular ordering of the ionic liquids rather than by entanglement of the nanotubes. The gels were thermally stable and did not shrivel, even under reduced pressure resulting from the nonvolatility of the ionic liquids, but they would readily undergo a gel-to-solid transition on absorbent materials. The use of a polymerizable ionic liquid as the gelling medium allows for the fabrication of a highly electroconductive polymer/nanotube composite material, which showed a substantial enhancement in dynamic hardness.

1,258 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic and transport properties of carbon nanotubes are reviewed, and the fundamental aspects of conduction regimes and transport length scales are presented using simple models of disorder, with the derivation of a few analytic results concerning specific situations of short and long-range static perturbations.
Abstract: This article reviews the electronic and transport properties of carbon nanotubes. The focus is mainly theoretical, but when appropriate the relation with experimental results is mentioned. While simple band-folding arguments will be invoked to rationalize how the metallic or semiconducting character of nanotubes is inferred from their topological structure, more sophisticated tight-binding and ab initio treatments will be introduced to discuss more subtle physical effects, such as those induced by curvature, tube-tube interactions, or topological defects. The same approach will be followed for transport properties. The fundamental aspects of conduction regimes and transport length scales will be presented using simple models of disorder, with the derivation of a few analytic results concerning specific situations of shortand long-range static perturbations. Further, the latest developments in semiempirical or ab initio simulations aimed at exploring the effect of realistic static scatterers chemical impurities, adsorbed molecules, etc. or inelastic electron-phonon interactions will be emphasized. Finally, specific issues, going beyond the noninteracting electron model, will be addressed, including excitonic effects in optical experiments, the Coulomb-blockade regime, and the Luttinger liquid, charge density waves, or superconducting transition.

1,249 citations

Journal ArticleDOI
TL;DR: The capability and feasibility of this technique have been demonstrated by the fabrication of titania/polymer or anatase nanotubes whose size and wall thickness could be independently varied by controlling a set of experimental parameters.
Abstract: Hollow nanofibers with walls made of inorganic/polymer composites or ceramics have been prepared by electrospinning two immiscible liquids through a coaxial, two-capillary spinneret, followed by selective removal of the cores. The capability and feasibility of this technique have been demonstrated by the fabrication of titania/polymer or anatase nanotubes whose size and wall thickness could be independently varied by controlling a set of experimental parameters. The presence of a sol−gel precursor in the sheath liquid was necessary for the formation of stable, coaxial jets and hollow fibers with robust walls. The circular cross-section, uniform size, and well-controlled orientation of these long hollow nanofibers are particularly attractive for use in fabricating fluidic devices and optical waveguides.

1,181 citations

Journal ArticleDOI
TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Abstract: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz*,‡ †Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States ‡Center for Bio/Molecular Science and Engineering Code 6900 and Division of Optical Sciences Code 5611, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States College of Science, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, United States Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States Sotera Defense Solutions, Crofton, Maryland 21114, United States

1,169 citations

Journal ArticleDOI
TL;DR: The results indicate that single-walled carbon nanotube-polymer composites can be used as effective lightweight EMI shielding materials and are found to correlate with the dc conductivity.
Abstract: Single-walled carbon nanotube (SWNT)−polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) shielding effectiveness (SE) of SWNTs. Our results indicate that SWNTs can be used as effective lightweight EMI shielding materials. Composites with greater than 20 dB shielding efficiency were obtained easily. EMI SE was tested in the frequency range of 10 MHz to 1.5 GHz, and the highest EMI shielding efficiency (SE) was obtained for 15 wt % SWNT, reaching 49 dB at 10 MHz and exhibiting 15−20 dB in the 500 MHz to 1.5 GHz range. The EMI SE was found to correlate with the dc conductivity, and this frequency range is found to be dominated by reflection. The effects of SWNT wall defects and aspect ratio on the EMI SE were also studied.

1,148 citations

References
More filters
Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Abstract: Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

5,908 citations

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Abstract: The use of individual molecules as functional electronic devices was first proposed in the 1970s (ref 1) Since then, molecular electronics2,3 has attracted much interest, particularly because it could lead to conceptually new miniaturization strategies in the electronics and computer industry The realization of single-molecule devices has remained challenging, largely owing to difficulties in achieving electrical contact to individual molecules Recent advances in nanotechnology, however, have resulted in electrical measurements on single molecules4,5,6,7 Here we report the fabrication of a field-effect transistor—a three-terminal switching device—that consists of one semiconducting8,9,10 single-wall carbon nanotube11,12 connected to two metal electrodes By applying a voltage to a gate electrode, the nanotube can be switched from a conducting to an insulating state We have previously reported5 similar behaviour for a metallic single-wall carbon nanotube operated at extremely low temperatures The present device, in contrast, operates at room temperature, thereby meeting an important requirement for potential practical applications Electrical measurements on the nanotube transistor indicate that its operation characteristics can be qualitatively described by the semiclassical band-bending models currently used for traditional semiconductor devices The fabrication of the three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics

5,258 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Abstract: The major part of this chapter has already appeared in [1], but because of the length restrictions (in Science), the discussion on why we think this form is given in only brief detail. This chapter goes into more depth to try to answer the questions of why the fullerenes form themselves. This is another example of the very special behavior of carbon. From a chemist’s standpoint, it is carbon’s ability to form multiple bonds that allows it to make these low dimensional forms rather than to produce tetrahedral forms. Carbon can readily accomplish this and it is in the mathematics and physics of the way this universe was put together, that carbon is given this property. One of the consequences of this property is that, if left to its own devices as carbon condenses from the vapor and if the temperature range is just right, above 1000°C, but lower than 1400°C, there is an efficient self-assembly process whose endpoint is C60.

5,215 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Abstract: The Young's modulus, strength, and toughness of nanostructures are important to proposed applications ranging from nanocomposites to probe microscopy, yet there is little direct knowledge of these key mechanical properties. Atomic force microscopy was used to determine the mechanical properties of individual, structurally isolated silicon carbide (SiC) nanorods (NRs) and multiwall carbon nanotubes (MWNTs) that were pinned at one end to molybdenum disulfide surfaces. The bending force was measured versus displacement along the unpinned lengths. The MWNTs were about two times as stiff as the SiC NRs. Continued bending of the SiC NRs ultimately led to fracture, whereas the MWNTs exhibited an interesting elastic buckling process. The strengths of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values. Because of buckling, the ultimate strengths of the stiffer MWNTs were less than those of the SiC NRs, although the MWNTs represent a uniquely tough, energy-absorbing material.

4,627 citations

Journal ArticleDOI
TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Abstract: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is 2 orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 microV/K at room temperature.

3,166 citations