scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

02 Aug 2002-Science (American Association for the Advancement of Science)-Vol. 297, Iss: 5582, pp 787-792
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.
Citations
More filters
Journal ArticleDOI
TL;DR: The photoluminescence spectrum reveals a broad blue emission band with a fine photon structure while the field emission study shows a notable emission current with a moderate turn-on field as expected, suggesting their potential applications in light and electron emission nanodevices.
Abstract: Aluminum nitride nanostructures are attractive for many promising applications in semiconductor nanotechnology. Herein we report on vapor−solid growth of quasi-aligned aluminum nitride nanocones on catalyst-coated wafers via the reactions between AlCl3 vapor and NH3 gas under moderate temperatures around 700 °C, and the growth mechanism is briefly discussed. The as-prepared wurtzite aluminum nitride nanocones grow preferentially along the c-axis with adjustable dimensions of the sharp tips in the range of 20−60 nm. The photoluminescence spectrum reveals a broad blue emission band with a fine photon structure while the field emission study shows a notable emission current with a moderate turn-on field as expected, suggesting their potential applications in light and electron emission nanodevices.

250 citations

Journal ArticleDOI
TL;DR: In this paper, the nano-particles of the manganese oxide nanocatalysts were uniformly distributed in the carbon matrix, which contributed to an improved electrical connection among the catalyst and current collectors.

249 citations

Journal ArticleDOI
TL;DR: In this critical review, a host of diverse, complementary strategies for the reliable synthesis of carbon nanotube-nanoparticle heterostructures using both covalent as well as non-covalent protocols are presented, incorporating not only single-walled and multi-Walled carbon nanOTubes but also diverse classes of metallic and semiconducting nanoparticles.
Abstract: The importance of generating carbon nanotube–nanoparticle heterostructures is that these composites ought to take advantage of and combine the unique physical and chemical properties of both carbon nanotubes and nanoparticles in one discrete structure. These materials have potential applicability in a range of diverse fields spanning heterogeneous catalysis to optoelectronic device development, of importance to chemists, physicists, materials scientists, and engineers. In this critical review, we present a host of diverse, complementary strategies for the reliable synthesis of carbon nanotube–nanoparticle heterostructures using both covalent as well as non-covalent protocols, incorporating not only single-walled and multi-walled carbon nanotubes but also diverse classes of metallic and semiconducting nanoparticles (221 references).

249 citations

Journal ArticleDOI
TL;DR: A review of the literature on carbon nanotube (CNT) dispersion in liquid crystals (LCs), focusing mainly on the approaches where the aim is to align CNTs along the LC director field, but also covering briefly the proposed possibility to enhance thermotropic LCs by CNT doping.
Abstract: We review the research on carbon nanotube (CNT) dispersion in liquid crystals (LCs), focusing mainly on the approaches where the aim is to align CNTs along the LC director field, but also covering briefly the proposed possibility to enhance thermotropic LCs by CNT doping All relevant LC types are considered: thermotropic LC hosts allowing dynamic CNT realignment, lyotropic LC hosts allowing very high concentration of CNTs uniformly aligned over macroscopic areas and consequent removal of the LC, and LC phases formed by CNTs themselves, used in spinning high-quality carbon nanotube fibres We also discuss the issue of CNT dispersion in some detail, since successful nanotube separation is imperative for success in this field regardless of the type of LC that is considered We end by defining a few major challenges for the development of the field over the next few years, critical for reaching the stage where industrially viable protocols for LC-based CNT alignment can be defined

249 citations

Journal ArticleDOI
TL;DR: In this paper, single wall carbon nanotube films (bucky paper) have been prepared using aqueous dispersions containing 0, 3, 6, and 10 M nitric acid.
Abstract: Single wall carbon nanotube films (bucky paper) have been prepared using aqueous dispersions containing 0, 3, 6, and 10 M nitric acid. With increasing nitric acid concentration, film tensile strength increased from 10 to 74 MPa, tensile modulus from 0.8 to 5.0 GPa, while in-plane dc electrical conductivity decreased from 3 × 104 S/m to 1.2 × 104 S/m. In-plane storage modulus exhibited no decrease in the measured temperature range (room temperature to 200 °C). Raman spectroscopy showed that nitric acid treatment results in the loss of the small diameter tubes. This was consistent with the X-ray diffraction observation, which showed that with increasing nitric acid concentration, (10) and (11) SWNT d spacings increased from 1.23 to 1.29 nm and from 0.74 to 0.87 nm, respectively. Morphological changes in the film have been monitored using scanning electron microscopy.

248 citations

References
More filters
Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Abstract: Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

5,908 citations

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Abstract: The use of individual molecules as functional electronic devices was first proposed in the 1970s (ref 1) Since then, molecular electronics2,3 has attracted much interest, particularly because it could lead to conceptually new miniaturization strategies in the electronics and computer industry The realization of single-molecule devices has remained challenging, largely owing to difficulties in achieving electrical contact to individual molecules Recent advances in nanotechnology, however, have resulted in electrical measurements on single molecules4,5,6,7 Here we report the fabrication of a field-effect transistor—a three-terminal switching device—that consists of one semiconducting8,9,10 single-wall carbon nanotube11,12 connected to two metal electrodes By applying a voltage to a gate electrode, the nanotube can be switched from a conducting to an insulating state We have previously reported5 similar behaviour for a metallic single-wall carbon nanotube operated at extremely low temperatures The present device, in contrast, operates at room temperature, thereby meeting an important requirement for potential practical applications Electrical measurements on the nanotube transistor indicate that its operation characteristics can be qualitatively described by the semiclassical band-bending models currently used for traditional semiconductor devices The fabrication of the three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics

5,258 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Abstract: The major part of this chapter has already appeared in [1], but because of the length restrictions (in Science), the discussion on why we think this form is given in only brief detail. This chapter goes into more depth to try to answer the questions of why the fullerenes form themselves. This is another example of the very special behavior of carbon. From a chemist’s standpoint, it is carbon’s ability to form multiple bonds that allows it to make these low dimensional forms rather than to produce tetrahedral forms. Carbon can readily accomplish this and it is in the mathematics and physics of the way this universe was put together, that carbon is given this property. One of the consequences of this property is that, if left to its own devices as carbon condenses from the vapor and if the temperature range is just right, above 1000°C, but lower than 1400°C, there is an efficient self-assembly process whose endpoint is C60.

5,215 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Abstract: The Young's modulus, strength, and toughness of nanostructures are important to proposed applications ranging from nanocomposites to probe microscopy, yet there is little direct knowledge of these key mechanical properties. Atomic force microscopy was used to determine the mechanical properties of individual, structurally isolated silicon carbide (SiC) nanorods (NRs) and multiwall carbon nanotubes (MWNTs) that were pinned at one end to molybdenum disulfide surfaces. The bending force was measured versus displacement along the unpinned lengths. The MWNTs were about two times as stiff as the SiC NRs. Continued bending of the SiC NRs ultimately led to fracture, whereas the MWNTs exhibited an interesting elastic buckling process. The strengths of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values. Because of buckling, the ultimate strengths of the stiffer MWNTs were less than those of the SiC NRs, although the MWNTs represent a uniquely tough, energy-absorbing material.

4,627 citations

Journal ArticleDOI
TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Abstract: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is 2 orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 microV/K at room temperature.

3,166 citations