scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

02 Aug 2002-Science (American Association for the Advancement of Science)-Vol. 297, Iss: 5582, pp 787-792
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the first and second order Raman spectra of multiwalled carbon nanotubes (MWNTs) functionalized with oxygenated groups were analyzed using two strong acid purification routes: reflux in concentrated (70%) HNO3 acid for 4h at 80°C and ultrasonification in 3HNO3 (70%): 1H2SO4 (98%) for 8.5h.
Abstract: We present changes in the first and second order Raman spectra of multiwalled carbon nanotubes (MWNTs) functionalized with oxygenated groups. The oxygen groups were introduced onto the nanotube surface through two strong acid purification routes: (1) reflux in concentrated (70%) HNO3 acid for 4h at 80°C and (2) ultrasonification in 3 HNO3 (70%):1H2SO4 (98%) for 8.5h. Raman spectroscopy, using two laser excitation wavelengths (514.5 and 632.8nm), x-ray photoelectron spectroscopy, and thermal gravimetric analysis were employed to study the evolution of the products. All the techniques revealed a higher degree of functionalization for scheme 2 compared to scheme 1. Charge transfer phenomena were manifested by a shift of the C1s core level towards higher binding energies. We found that the intensity of both the D and G energy Raman modes if normalized to the second order mode D* mode follows similar trends upon acid treatments. We interpret this result together with the observed dispersion of G mode as an ind...

225 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress in the tailored assembly of carbon nanotubes and graphene into three-dimensional architectures with particular emphasis on their own research employing self-assembly principles.
Abstract: This Feature Article reviews recent progress in the tailored assembly of carbon nanotubes and graphene into three-dimensional architectures with particular emphasis on our own research employing self-assembly principles. Carbon nanotubes and graphene can be assembled into macroporous films, hollow spherical capsules, or hollow nanotubes, via directed assembly from solvent dispersion. This approach is cost-effective and beneficial for large-scale assembly, but pre-requests stable dispersion in a solvent medium. Directed growth from a nanopatterned catalyst array is another promising approach, which enables the control of morphology and properties of graphitic materials as well as their assembly. In addition, the aforementioned two approaches can be synergistically integrated to generate a carbon hybrid assembly consisting of vertical carbon nanotubes grown on flexible graphene films. Tailored assembly relying on scalable self-assembly principles offer viable routes that are scalable for mass production towards the ultimate utilization of graphitic carbon materials in nanoelectronics, displays, sensors, energy storage/conversion devices, and so on, including future flexible devices.

225 citations

Journal ArticleDOI
28 Jul 2005-Langmuir
TL;DR: Electrochemical impedance spectroscopy revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes.
Abstract: A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (Rct) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H2 and O2 as input fuels at 25 and 60 °C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as b...

224 citations

Journal ArticleDOI
TL;DR: The results from the cell culture test suggest that the presence of MWCNT in the composite inhibits the growth of the fibroblast cells, and the Raman spectroscopic analysis suggests the interaction between PLLA and M WCNT occurs mainly through the hydrophobic C-CH3 functional groups.
Abstract: Much effort has been directed at the fabrication of carbon nanotubes (CNTs)/polymer composites and the characterization of their physical properties. Among them, composites comprising CNTs and the biocompatible polymers are of special interest due to their potential for specific biomedical applications. we report the preparation of the MWCNT/poly(L-lactide) composite and the corresponding spectroscopic (Raman) and the microscopic (SEM, TEM) characterization. The electronic transport, thermal properties, and biocompatibility of this composite have also been investigated. The Raman spectroscopic analysis suggests the interaction between PLLA and MWCNT occurs mainly through the hydrophobic C-CH3 functional groups. The DC conductivity of the composite increases as the MWCNT loading is increased. Such behavior can be described by a percolation mechanism in which a percolation threshold at about 14 wt % MWCNT loading is observed with the maximum end conductivity of 0.1 S x cm(-1). The DSC study of the PLLA/MWCNT composite reveals that the MWCNTs in the composite have the effect of inducing crystallization and plasticizing the polymer matrix. The results from the cell culture test suggest that the presence of MWCNT in the composite inhibits the growth of the fibroblast cells.

224 citations

Journal ArticleDOI
TL;DR: Investigation of different chain lengths and tethering densities of the polymers as well as the interparticle potentials for nanometric versus mesoscopic particles suggests that polymer-induced steric stabilization provides a generic method for separation of SWNTs from mixtures of colloidal species, as demonstrated experimentally.
Abstract: Dimensionality is known to play a key role in the solution behavior of nano- and mesoparticles. In particular, the shape and the range of the attractive van der Waals interparticle potential are determined by the number of microscopic versus mesoscopic dimensions. For single-walled nanotubes (SWNTs), where two of the dimensions are nanoscopic and one is mesoscopic, the intertube attraction is relatively short ranged, albeit very steep. The very large attraction (compared to the thermal energy, KbT) among long SWNTs leads to aggregation at different levels and constitutes a major barrier for manipulation and utilization of SWNTs. This study demonstrates that it is possible to shape the intertube potential by decorating SWNTs with end-tethered polymers. In good solvent conditions for the polymers, entropic repulsion among the tethered chains generates a free energy barrier that prevents SWNTs from approaching the attractive part of the intertube potential. Consequentially, stable dispersions of individual, ...

223 citations

References
More filters
Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Abstract: Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

5,908 citations

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Abstract: The use of individual molecules as functional electronic devices was first proposed in the 1970s (ref 1) Since then, molecular electronics2,3 has attracted much interest, particularly because it could lead to conceptually new miniaturization strategies in the electronics and computer industry The realization of single-molecule devices has remained challenging, largely owing to difficulties in achieving electrical contact to individual molecules Recent advances in nanotechnology, however, have resulted in electrical measurements on single molecules4,5,6,7 Here we report the fabrication of a field-effect transistor—a three-terminal switching device—that consists of one semiconducting8,9,10 single-wall carbon nanotube11,12 connected to two metal electrodes By applying a voltage to a gate electrode, the nanotube can be switched from a conducting to an insulating state We have previously reported5 similar behaviour for a metallic single-wall carbon nanotube operated at extremely low temperatures The present device, in contrast, operates at room temperature, thereby meeting an important requirement for potential practical applications Electrical measurements on the nanotube transistor indicate that its operation characteristics can be qualitatively described by the semiclassical band-bending models currently used for traditional semiconductor devices The fabrication of the three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics

5,258 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Abstract: The major part of this chapter has already appeared in [1], but because of the length restrictions (in Science), the discussion on why we think this form is given in only brief detail. This chapter goes into more depth to try to answer the questions of why the fullerenes form themselves. This is another example of the very special behavior of carbon. From a chemist’s standpoint, it is carbon’s ability to form multiple bonds that allows it to make these low dimensional forms rather than to produce tetrahedral forms. Carbon can readily accomplish this and it is in the mathematics and physics of the way this universe was put together, that carbon is given this property. One of the consequences of this property is that, if left to its own devices as carbon condenses from the vapor and if the temperature range is just right, above 1000°C, but lower than 1400°C, there is an efficient self-assembly process whose endpoint is C60.

5,215 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Abstract: The Young's modulus, strength, and toughness of nanostructures are important to proposed applications ranging from nanocomposites to probe microscopy, yet there is little direct knowledge of these key mechanical properties. Atomic force microscopy was used to determine the mechanical properties of individual, structurally isolated silicon carbide (SiC) nanorods (NRs) and multiwall carbon nanotubes (MWNTs) that were pinned at one end to molybdenum disulfide surfaces. The bending force was measured versus displacement along the unpinned lengths. The MWNTs were about two times as stiff as the SiC NRs. Continued bending of the SiC NRs ultimately led to fracture, whereas the MWNTs exhibited an interesting elastic buckling process. The strengths of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values. Because of buckling, the ultimate strengths of the stiffer MWNTs were less than those of the SiC NRs, although the MWNTs represent a uniquely tough, energy-absorbing material.

4,627 citations

Journal ArticleDOI
TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Abstract: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is 2 orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 microV/K at room temperature.

3,166 citations