scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

02 Aug 2002-Science (American Association for the Advancement of Science)-Vol. 297, Iss: 5582, pp 787-792
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.
Citations
More filters
Journal ArticleDOI
TL;DR: The proposed gas sensing mechanism is experimentally proved by DRIFT spectra results and has potential applications for monitoring air pollution, especially for harmful and toxic VOCs (volatile organic compounds).
Abstract: Novel zinc oxide quantum dots (ZnO QDs) decorated graphene nanocomposites were fabricated by a facile solution-processed method. ZnO QDs with a size ca. 5 nm are nucleated and grown on the surface of the graphene template, and its distribution density can be easily controlled by the reaction time and precursor concentration. The ZnO QDs/graphene nanocomposite materials enhance formaldehyde sensing properties by 4 times compared to pure graphene at room temperature. Moreover, the sensors based on the nanocomposites have fast response (ca. 30 seconds) and recovery (ca. 40 seconds) behavior, excellent room temperature selectivity and stability. The gas sensing enhancement is attributed to the synergistic effect of graphene and ZnO QDs. The electron transfer between the ZnO QDs and the graphene is due to oxidation process of the analyzed gas on the ZnO QDs' surface. This proposed gas sensing mechanism is experimentally proved by DRIFT spectra results. The ZnO QDs/graphene nanocomposites sensors have potential applications for monitoring air pollution, especially for harmful and toxic VOCs (volatile organic compounds).

223 citations

Journal ArticleDOI
TL;DR: In this paper, a simple silica templated ionic liquids (ILs) impregnating method and an annealing process was used to synthesize carbon nanobbles for anodes for lithium-ion batteries (LIBs) and sodium ion batteries (SIBs).

223 citations

Journal ArticleDOI
TL;DR: In this paper, the carbon nanotubes (CNTs) were reinforced with polypropylene (PP) matrix resins to improve the electrical, thermal, and mechanical properties of CNTs/PP composites in different contents of 0, 1, 2, 3, and 5 wt% The volume resistivity was measured to discover the percolation threshold of the composites.
Abstract: In this work, the carbon nanotubes (CNTs) were reinforced with polypropylene (PP) matrix resins to improve the electrical, thermal, and mechanical properties of CNTs/PP composites in different contents of 0, 1, 2, 3, and 5 wt% The volume resistivity was measured to discover the percolation threshold of the composites The crystallization kinetics, organizations, and microstructures of CNTs/PP composites were investigated with differential scanning calorimeter (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses, respectively The Raman spectroscopy was also performed to obtain information on the CNTs/PP interactions As a result, the volume resistivity was decreased with increasing the CNT content that could be governed in a percolation-like power law with a relatively low percolation threshold And the crystallization exothermic peak shifted to a higher temperature, and the overall crystallization time was reduced by the increment of CNT content Also, the nucleant of CNTs affected the crystallization of PP, but was not linearly dependent on the CNT content that meant a saturation of the nucleant effect at low CNT content

222 citations

Journal ArticleDOI
01 Feb 2006-Carbon
TL;DR: In this paper, a noncovalent functionalization of multi-walled carbon nanotubes (MWNTs) with supramolecular surfactant for layer-by-layer assembling of MWNT multi-layer film onto indium tin oxide (ITO)-coated glass plate and for attaching gold nanoparticles (GNPs) onto the MWNTs to fabricate GNP/MWNT nanohybrid.

221 citations

Journal ArticleDOI
TL;DR: A parallel assembly process that allows one to simultaneously position, shape, and link SWNTs with sub-100-nm resolution is demonstrated and a mathematical relationship describing the geometrically weighted interactions betweenSWNTs and the two different SAMs required to overcome solvent–SWNT interactions and effect assembly is provided.
Abstract: Directed assembly of nanoscale building blocks such as single-walled carbon nanotubes (SWNTs) into desired architectures is a major hurdle for a broad range of basic research and technological applications (e.g., electronic devices and sensors). Here we demonstrate a parallel assembly process that allows one to simultaneously position, shape, and link SWNTs with sub-100-nm resolution. Our method is based on the observation that SWNTs are strongly attracted to COOH-terminated self-assembled monolayers (COOH-SAMs) and that SWNTs with lengths greater than the dimensions of a COOH-SAM feature will align along the boundary between the COOH-SAM feature and a passivating CH3-terminated SAM. By using nanopatterned affinity templates of 16-mercaptohexadecanonic acid, passivated with 1-octadecanethiol, we have formed SWNT dot, ring, arc, letter, and even more sophisticated structured thin films and continuous ropes. Experiment and theory (Monte Carlo simulations) suggest that the COOH-SAMs localize the solvent carrying the nanotubes on the SAM features, and that van der Waals interactions between the tubes and the COOH-rich feature drive the assembly process. A mathematical relationship describing the geometrically weighted interactions between SWNTs and the two different SAMs required to overcome solvent–SWNT interactions and effect assembly is provided.

220 citations

References
More filters
Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Abstract: Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

5,908 citations

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Abstract: The use of individual molecules as functional electronic devices was first proposed in the 1970s (ref 1) Since then, molecular electronics2,3 has attracted much interest, particularly because it could lead to conceptually new miniaturization strategies in the electronics and computer industry The realization of single-molecule devices has remained challenging, largely owing to difficulties in achieving electrical contact to individual molecules Recent advances in nanotechnology, however, have resulted in electrical measurements on single molecules4,5,6,7 Here we report the fabrication of a field-effect transistor—a three-terminal switching device—that consists of one semiconducting8,9,10 single-wall carbon nanotube11,12 connected to two metal electrodes By applying a voltage to a gate electrode, the nanotube can be switched from a conducting to an insulating state We have previously reported5 similar behaviour for a metallic single-wall carbon nanotube operated at extremely low temperatures The present device, in contrast, operates at room temperature, thereby meeting an important requirement for potential practical applications Electrical measurements on the nanotube transistor indicate that its operation characteristics can be qualitatively described by the semiclassical band-bending models currently used for traditional semiconductor devices The fabrication of the three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics

5,258 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Abstract: The major part of this chapter has already appeared in [1], but because of the length restrictions (in Science), the discussion on why we think this form is given in only brief detail. This chapter goes into more depth to try to answer the questions of why the fullerenes form themselves. This is another example of the very special behavior of carbon. From a chemist’s standpoint, it is carbon’s ability to form multiple bonds that allows it to make these low dimensional forms rather than to produce tetrahedral forms. Carbon can readily accomplish this and it is in the mathematics and physics of the way this universe was put together, that carbon is given this property. One of the consequences of this property is that, if left to its own devices as carbon condenses from the vapor and if the temperature range is just right, above 1000°C, but lower than 1400°C, there is an efficient self-assembly process whose endpoint is C60.

5,215 citations

Journal ArticleDOI
26 Sep 1997-Science
TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Abstract: The Young's modulus, strength, and toughness of nanostructures are important to proposed applications ranging from nanocomposites to probe microscopy, yet there is little direct knowledge of these key mechanical properties. Atomic force microscopy was used to determine the mechanical properties of individual, structurally isolated silicon carbide (SiC) nanorods (NRs) and multiwall carbon nanotubes (MWNTs) that were pinned at one end to molybdenum disulfide surfaces. The bending force was measured versus displacement along the unpinned lengths. The MWNTs were about two times as stiff as the SiC NRs. Continued bending of the SiC NRs ultimately led to fracture, whereas the MWNTs exhibited an interesting elastic buckling process. The strengths of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values. Because of buckling, the ultimate strengths of the stiffer MWNTs were less than those of the SiC NRs, although the MWNTs represent a uniquely tough, energy-absorbing material.

4,627 citations

Journal ArticleDOI
TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Abstract: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device. The observed thermal conductivity is more than 3000 W/K m at room temperature, which is 2 orders of magnitude higher than the estimation from previous experiments that used macroscopic mat samples. The temperature dependence of the thermal conductivity of nanotubes exhibits a peak at 320 K due to the onset of umklapp phonon scattering. The measured thermoelectric power shows linear temperature dependence with a value of 80 microV/K at room temperature.

3,166 citations