scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

02 Aug 2002-Science (American Association for the Advancement of Science)-Vol. 297, Iss: 5582, pp 787-792
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.
Citations
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Abstract: Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

8,534 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review is presented on the researches and developments related to electrospun polymer nanofibers including processing, structure and property characterization, applications, and modeling and simulations.

6,987 citations


Cites background from "Carbon Nanotubes--the Route Toward ..."

  • ...Several comprehensive reviews have summarized the researches done until very recently on these composites [5,98,112,150]....

    [...]

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
01 Aug 2006-Carbon
TL;DR: In this article, a review of the progress to date in the field of mechanical reinforcement of polymers using nanotubes is presented, and the most promising processing methods for mechanical reinforcement are discussed.

3,770 citations


Cites background from "Carbon Nanotubes--the Route Toward ..."

  • ...These properties make nanotubes ideal, not only for a wide range of applications [1] but as a test bed for fundamental science [2]....

    [...]

References
More filters
Journal ArticleDOI
Ray H. Baughman1
17 Nov 2000-Science
TL;DR: Vigolo et al. as discussed by the authors proposed a more economically viable nanotube production process, which may open the door to large-scale devices and materials based on carbon nanotubes.
Abstract: Nanotube fibers are expected to have a wide range of applications from energy storage to high-strength mechanical devices. But as Baughman explains in his Perspective, methods for making such fibers have been of limited success. In contrast, the process reported by Vigolo et al. shows great promise. Together with a recently reported, more economically viable nanotube production process, this method may open the door to large-scale devices and materials based on carbon nanotubes.

71 citations

Journal ArticleDOI
12 Apr 2001-Nature
TL;DR: Catherine Zandonella delves into a carbon controversy as researchers trying to turn nanotubes into storage systems for hydrogen fuel are finding that corporate funding and academic openness can be hard to combine.
Abstract: Researchers trying to turn nanotubes into storage systems for hydrogen fuel are finding that corporate funding and academic openness can be hard to combine. Catherine Zandonella delves into a carbon controversy.

59 citations

Journal ArticleDOI
TL;DR: The fabrication of carbon nanotube emitters with excellent emission properties is described in this article, where the nanotubes synthesized by arc discharge are used as electron emitters.
Abstract: The fabrication of carbon nanotube emitters with excellent emission properties is described. The nanotubes synthesized by arc discharge are used as electron emitters. The fibrous bundles containing nanotubes were crushed, mixed with conductive pastes, and slurries and then screen printed. The scanning electron microscopy images showed that the nanotubes were disordered and the average diameter was about several tens of nanometers. In a diode structure, the electron field emission can be turned on at a field as low as 2 V/μm and attains current density as large as 7.2 mA/cm2. No significant degradation of these performance is observed for thus made electron emitters, operated under 3 V/μm (J=2.8 mA/cm2) for tens of hours. The influence of the growth condition and post-treatment process on the emission characteristics of carbon nanotubes emitters will also be discussed in this article.

22 citations