scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Carbon pools and flux of global forest ecosystems.

14 Jan 1994-Science (American Association for the Advancement of Science)-Vol. 263, Iss: 5144, pp 185-190
TL;DR: Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.
Abstract: Forest systems cover more than 4.1 x 109 hectares of the Earth9s land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 ± 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 ± 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 ± 0.4 petagrams of carbon per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon. Future forest carbon cycling trends attributable to losses and regrowth associated with global climate and land-use change are uncertain. Model projections and some results suggest that forests could be carbon sinks or sources in the future.
Citations
More filters
Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Book
01 Sep 2011
TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
Abstract: I. CONTEXT * The Ecosystem Concept * Earth's Climate System * Geology and Soils * II. MECHANISMS * Terrestrial Water and Energy Balance * Carbon Input to Terrestrial Ecosystems * Terrestrial Production Processes * Terrestrial Decomposition * Terrestrial Plant Nutrient Use * Terrestrial Nutrient Cycling * Aquatic Carbon and Nutrient Cycling * Trophic Dynamics * Community Effects on Ecosystem Processes * III. PATTERNS * Temporal Dynamics * Landscape Heterogeneity and Ecosystem Dynamics * IV. INTEGRATION * Global Biogeochemical Cycles * Managing and Sustaining Ecosystem * Abbreviations * Glossary * References

3,086 citations

Journal ArticleDOI
28 Nov 2003
TL;DR: In this article, the authors highlight the complexity of land-use/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions, and argue that a systematic analysis of local-scale land use change studies, conducted over a range of timescales, helps to uncover general principles that provide an explanation and prediction of new land use changes.
Abstract: We highlight the complexity of land-use/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions. The review summarizes recent estimates on changes in cropland, agricultural intensification, tropical deforestation, pasture expansion, and urbanization and identifies the still unmeasured land-cover changes. Climate-driven land-cover modifications interact with land-use changes. Land-use change is driven by synergetic factor combinations of resource scarcity leading to an increase in the pressure of production on resources, changing opportunities created by markets, outside policy intervention, loss of adaptive capacity, and changes in social organization and attitudes. The changes in ecosystem goods and services that result from land-use change feed back on the drivers of land-use change. A restricted set of dominant pathways of land-use change is identified. Land-use change can be understood using the concepts of complex adaptive systems and transitions. Integrated, place-based research on land-use/land-cover change requires a combination of the agent-based systems and narrative perspectives of understanding. We argue in this paper that a systematic analysis of local-scale land-use change studies, conducted over a range of timescales, helps to uncover general principles that provide an explanation and prediction of new land-use changes.

2,491 citations

01 Jan 2003

2,059 citations


Cites background from "Carbon pools and flux of global for..."

  • ...Mineral forest soils to that depth contain approximately 700 Pg C (Dixon et al., 1994)....

    [...]

References
More filters
Journal ArticleDOI
08 Jul 1982-Nature
TL;DR: In this article, an analysis of 2,700 soil profiles, organized on a climate basis using the Holdridge life-zone classification system, indicates relationships between soil carbon density and climate, a major soil forming factor.
Abstract: Soil organic carbon in active exchange with the atmosphere constitutes approximately two-thirds of the carbon in terrestrial ecosystems1,2. The relatively large size and long residence time of this pool (of the order of 1,200 yr) make it a potentially important sink for carbon released to the atmosphere by fossil fuel combustion; however, in many cases, human disturbance has caused a decrease in soil carbon storage3,4. Various recent estimates place the global total of soil carbon between 700 (ref. 2) and 2,946 × 1015 g (ref. 5) with several intermediate estimates: 1,080 (ref. 1), 1,392 (ref. 6), 1,456 (ref. 3), and 2,070 × 1015g (ref. 7). Schlesinger's3 estimate seems to be based on the most extensive data base (∼200 observations, some of which are mean values derived from large studies in particular areas) and is widely cited in carbon cycle studies. In addition to estimating the world soil carbon pool, it is important to establish the relationships between the geographical distribution of soil carbon and climate, vegetation, human development and other factors as a basis for assessing the influence of changes in any of these factors on the global carbon cycle. Our analysis of 2,700 soil profiles, organized on a climate basis using the Holdridge life-zone classification system8, indicates relationships between soil carbon density and climate, a major soil forming factor. Soil carbon density generally increases with increasing precipitation, and there is an increase in soil carbon with decreasing temperature for any particular level of precipitation. When the potential evapotranspiration equals annual precipitation, soil carbon density9 is ∼10 kg m−2, exceptions to this being warm temperate and subtropical soils. Based on recent estimates of the areal extent of major ecosystem complexes9,10 which correspond well with climatic life zones, the global soil organic carbon pool is estimated to be ∼1,395 × 1015g.

2,122 citations

Journal ArticleDOI
TL;DR: A model to predict global patterns in vegetation physiognomy was developed from physiological considera- tions influencing the distributions of different functional types of plant in a given environment, and selected the potentially dominant types from among them as discussed by the authors.
Abstract: A model to predict global patterns in vegetation physiognomy was developed from physiological considera- tions influencing the distributions of different functional types of plant. Primary driving variables are mean coldest- month temperature, annual accumulated temeprature over 5"C, and a drought index incorporating the seasonality of precipitation and the available water capacity of the soil. The model predicts which plant types can occur in a given environment, and selects the potentially dominant types from among them. Biomes arise as combinations of domi- nant types. Global environmental data were supplied as monthly means of temperature, precipitation and sunshine (interpolated to a global 0.5" grid, with a lapse-rate correc-

2,040 citations

Journal ArticleDOI
23 Mar 1990-Science
TL;DR: The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2, and a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.
Abstract: Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

2,016 citations

Journal ArticleDOI
20 May 1993-Nature
TL;DR: In this paper, a process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration, with most of the production attributable to tropical evergreen forest.
Abstract: A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

1,929 citations

Journal ArticleDOI
25 Jun 1993-Science
TL;DR: Although this rate of deforestation is lower than previous estimates, the effect on biological diversity is greater and tropical forest habitat, severely affected with respect to biological diversity, increased.
Abstract: Landsat satellite imagery covering the entire forested portion of the Brazilian Amazon Basin was used to measure, for 1978 and 1988, deforestation, fragmented forest, defined as areas less than 100 square kilometers surrounded by deforestation, and edge effects of 1 kilometer into forest from adjacent areas of deforestation. Tropical deforestation increased from 78,000 square kilometers in 1978 to 230,000 square kilometers in 1988 while tropical forest habitat, severely affected with respect to biological diversity, increased from 208,000 to 588,000 square kilometers. Although this rate of deforestation is lower than previous estimates, the effect on biological diversity is greater.

1,574 citations