scispace - formally typeset
Journal ArticleDOI

Carbon “quantum” dots for optical bioimaging

Reads0
Chats0
TLDR
Significant advances already made in their syntheses, structural and mechanistic understandings, and evaluations for biocompatibilities and potential bio-applications are reviewed.
Abstract
Carbon dots, generally referring to small carbon nanoparticles with various levels of surface passivation, have emerged as a new class of quantum dot-like fluorescent nanomaterials. Since the original report in 2006, carbon dots have been investigated by many research groups worldwide, with major advances already made in their syntheses, structural and mechanistic understandings, and evaluations for biocompatibilities and potential bio-applications. In this article, representative studies responsible for these advances in the development and understanding of carbon dots are reviewed, and those targeting the use of carbon dots as high-performance yet nontoxic fluorescence agents for optical bioimaging in vitro and in vivo are highlighted and discussed.

read more

Citations
More filters
Journal ArticleDOI

The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective

TL;DR: The actual mechanism of photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers as mentioned in this paper, and three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs).
Journal ArticleDOI

Carbon quantum dots: synthesis, properties and applications

TL;DR: Carbon quantum dots (CQDs, C-dots or CDs) have found wide use in more and more fields during the last few years as discussed by the authors, focusing on their synthetic methods, size control, modification strategies, photoelectric properties, luminescent mechanism, and applications in biomedicine, optronics, catalysis and sensor issues.
Journal ArticleDOI

Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications

TL;DR: The properties and synthesis methods of these carbon nanodots are reviewed and emphasis is placed on their biological (both fundamental and theranostic) applications.
Journal ArticleDOI

An overview of nanoparticles commonly used in fluorescent bioimaging

TL;DR: An overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of fluorescent imaging, mainly of cells and tissues is given.
Journal ArticleDOI

Nanomaterials for In Vivo Imaging

TL;DR: This work addresses the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-the authors stratify nanommaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or nuclear properties.
References
More filters
Journal ArticleDOI

Semiconductor Nanocrystals as Fluorescent Biological Labels

TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Journal ArticleDOI

Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites

TL;DR: In this paper, a simple route to the production of high-quality CdE (E=S, Se, Te) semiconductor nanocrystallites is presented, based on pyrolysis of organometallic reagents by injection into a hot coordinating solvent.
Journal ArticleDOI

Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics

TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Journal ArticleDOI

Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection

TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Journal ArticleDOI

Green fluorescent protein as a marker for gene expression

TL;DR: A complementary DNA for the Aequorea victoria green fluorescent protein produces a fluorescent product when expressed in prokaryotic or eukaryotic cells, which can be used to monitor gene expression and protein localization in living organisms.
Related Papers (5)