scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database

TL;DR: A new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes, able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants.
Abstract: The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The findings indicate the presence of “hitherto-unnoticed” conjugative plasmids, including IncP/P-1 or PromA derivative ones in nature, which would have important roles in the exchange of various genes, including antibiotic resistance genes, among different bacteria in nature.
Abstract: Plasmids are known to spread among different bacteria. However, which plasmids spread among environmental samples and in which environments they are present is still poorly understood. ABSTRACT Various conjugative plasmids were obtained by exogenous plasmid capture, biparental mating, and/or triparental mating methods from different environmental samples in Japan. Based on phylogenetic analyses of their whole-nucleotide sequences, new IncP/P-1 plasmids that could be classified into novel subgroups were obtained. Mini-replicons of the plasmids were constructed, and each of them was incompatible with at least one of the IncP/P-1 plasmids, although they showed diverse iteron sequences in their oriV regions. There were two large clades of IncP/P-1 plasmids, clade I and II. Plasmids in clade I and II included antibiotic resistance genes. Notably, nucleotide compositions of newly found plasmids exhibited different tendencies compared with those of the previously well-studied IncP/P-1 plasmids. Indeed, the host range of plasmids of clade II was different from that of clade I. Although few PromA plasmids have been reported, the number of plasmids belonging to PromAβ, and -γ subgroups detected in this study was close to that of IncP/P-1 plasmids. The host ranges of PromAγ and PromAδ plasmids were broad and transferred to different and distinct classes of Proteobacteria. Interestingly, PromA plasmids and many IncP/P-1 plasmids do not carry any accessory genes. These findings indicate the presence of “hitherto-unnoticed” conjugative plasmids, including IncP/P-1 or PromA derivative ones in nature. These plasmids would have important roles in the exchange of various genes, including antibiotic resistance genes, among different bacteria in nature. IMPORTANCE Plasmids are known to spread among different bacteria. However, which plasmids spread among environmental samples and in which environments they are present is still poorly understood. This study showed that unidentified conjugative plasmids were present in various environments. Different novel IncP/P-1 plasmids were found, whose host ranges were different from those of known plasmids, showing wide diversity of IncP/P-1 plasmids. PromA plasmids, exhibiting a broad host range, were diversified into several subgroups and widely distributed in varied environments. These findings are important for understanding how bacteria naturally exchange their genes, including antibiotic resistance genes, a growing threat to human health worldwide.

4 citations

Journal ArticleDOI
TL;DR: In this article , a machine learning framework is presented to automate knowledge discovery through knowledge graph construction, inconsistency resolution, and iterative link prediction, which leads to a performance improvement and more findings.
Abstract: Abstract We present a machine learning framework to automate knowledge discovery through knowledge graph construction, inconsistency resolution, and iterative link prediction. By incorporating knowledge from 10 publicly available sources, we construct an Escherichia coli antibiotic resistance knowledge graph with 651,758 triples from 23 triple types after resolving 236 sets of inconsistencies. Iteratively applying link prediction to this graph and wet-lab validation of the generated hypotheses reveal 15 antibiotic resistant E. coli genes, with 6 of them never associated with antibiotic resistance for any microbe. Iterative link prediction leads to a performance improvement and more findings. The probability of positive findings highly correlates with experimentally validated findings ( R 2 = 0.94). We also identify 5 homologs in Salmonella enterica that are all validated to confer resistance to antibiotics. This work demonstrates how evidence-driven decisions are a step toward automating knowledge discovery with high confidence and accelerated pace, thereby substituting traditional time-consuming and expensive methods.

4 citations

Journal ArticleDOI
TL;DR: The identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households are confirmed and serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids are determined.
Abstract: E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK®2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST1 heat-stable toxin. Both genomes carried ESBL genes (blaEC-15, blaCTX-M-8, and blaCTX-M-55). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.

4 citations

Journal ArticleDOI
TL;DR: In this article, a reference-independent solution was proposed to exploit the synergistic effects of multi-omic data integration for the in situ study of microbiomes using long-read sequencing data.
Abstract: Real-world evaluations of metagenomic reconstructions are challenged by distinguishing reconstruction artifacts from genes and proteins present in situ. Here, we evaluate short-read-only, long-read-only and hybrid assembly approaches on four different metagenomic samples of varying complexity. We demonstrate how different assembly approaches affect gene and protein inference, which is particularly relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic and metaproteomic data to assess the metagenomic data-based protein predictions. Our findings pave the way for critical assessments of metagenomic reconstructions. We propose a reference-independent solution, which exploits the synergistic effects of multi-omic data integration for the in situ study of microbiomes using long-read sequencing data.

4 citations

Posted ContentDOI
25 Jun 2022
TL;DR: In this article , a group of temperate bacterial viruses, termed phage-plasmids, commonly encode different and multiple types of resistance genes of high clinical importance, often in integrons.
Abstract: Abstract Antibiotic resistance is rapidly spreading by horizontal transfer of resistance genes in mobile genetic elements. While plasmids are key drivers of this process, very few integrative phages encode antibiotic resistance genes. Here, we find that phage-plasmids, elements that are both phages and plasmids, often carry antibiotic resistance genes. We found 60 phage-plasmids with 184 antibiotic resistance genes, including broad-spectrum-cephalosporins, carbapenems, aminoglycosides, fluoroquinolones and colistin. These genes are in a few hotspots, seem to have been co-translocated with transposable elements, and are often in class I integrons, which had not been previously found in phages. We tried to induce six phage-plasmids with resistance genes (including four with resistance integrons) and succeeded in five cases. Other phage-plasmids and integrative prophages were co-induced in these experiments. As a proof of principle, we focused on a P1-like element encoding an extended spectrum β-lactamase, bla CTX-M-55 . After induction, we confirmed that it’s capable to infect and convert four other E. coli strains. Its re-induction led to further conversion of a sensitive strain, confirming it’s a fully functional phage. This study shows that phage-plasmids carry a large diversity of clinically relevant antibiotic resistance genes that they transfer across bacteria. As plasmids, these elements seem very plastic and capable of acquiring genes from other plasmids. As phages, they may provide novel paths of transfer for resistance genes, because they can infect bacteria distant in time and space from the original host. As a matter of alarm, they may also eventually mediate transfer to other types of phages. Importance Dissemination of antimicrobial resistances is a major threat to global health. Here, we show that a group of temperate bacterial viruses (=phages), termed phage-plasmids, commonly encode different and multiple types of resistance genes of high clinical importance, often in integrons. This is unexpected since phages typically do not carry resistance genes and, hence, do not confer their hosts with resistance upon infection and genome integration. Our experiments with phage-plasmids isolated from clinical settings confirmed they infect sensitive strains, rendering them antibiotic resistant. The spread of antibiotic resistance genes by phage-plasmids is worrisome because it dispenses cell-to-cell contact, necessary for the canonical plasmid transfer (=conjugation). Furthermore, their integrons are now genetic platforms for the acquisition of novel resistance genes.

4 citations

References
More filters
Journal ArticleDOI
TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.

88,255 citations


"CARD 2020: antibiotic resistome sur..." refers background in this paper

  • ...The latter is described by CARD’s Model Ontology (MO, Supplementary Figure S1), which includes reference nucleotide and protein sequences, as well as additional search parameters including mutations conferring AMR (if applicable) and curated BLAST(P/N) (34,35) bit score cut-offs....

    [...]

Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...Metagenomics analysis (i.e. RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

  • ...RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...In 2017, we described the CARD*Shark text-mining algorithm (26) for computer-assisted literature triage, which we have expanded based on the new ARO Drug Class classification tags....

    [...]

Journal ArticleDOI
TL;DR: The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences.
Abstract: Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications.

13,223 citations


"CARD 2020: antibiotic resistome sur..." refers background or methods in this paper

  • ...The website also includes a built-in BLAST instance for comparing sequences to CARD reference sequences and a web instance of RGI for resistome prediction with data visualization tools (https:// card.mcmaster.ca/analyze)....

    [...]

  • ...The RVM is functionally similar to the PVM, except it works for rRNA mutations and therefore uses a nucleotide reference sequence and a BLASTN bit score cut-off....

    [...]

  • ...Briefly, RGI algorithmically predicts AMR genes and mutations from submitted genomes using a combination of open reading frame prediction with Prodigal (38), sequence alignment with BLAST (35) or DIAMOND (39), and curated resistance mutations included with the AMR detection model....

    [...]

  • ...In the same time period, the CARD website hosted ∼45 000 BLAST analyses, ∼220 000 RGI analyses, ∼64 000 data file downloads, and ∼10,000 RGI software downloads....

    [...]

  • ...We had determined that the asymptotic nature of the BLAST expectation value (E) gave it very low discriminatory power between different -lactamase gene families (nearly 13 of CARD’s content), but that the linear nature of the BLAST bit score (S′) allowed this level of discrimination....

    [...]