scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database

TL;DR: A new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes, able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants.
Abstract: The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
25 Jan 2022-MSystems
TL;DR: The data suggest that F plasmids influence E. coli host range, clade structure, and zoonotic potential in ST95 and ExPEC more broadly, and indicate that the role of food animals as a source of human ExPec disease is complex and warrants further investigation.
Abstract: E. coli ST95 is one of five dominant ExPEC lineages globally and noted for causing urinary tract and bloodstream infections and neonatal meningitis in humans and colibacillosis in poultry. Using high-resolution phylogenomics, we show that F replicon sequence type is linked to ST95 clade structure and zoonotic potential. ABSTRACT Escherichia coli sequence type 95 (ST95) is an extraintestinal pathogenic E. coli (ExPEC) renowned for its ability to cause significant morbidity and mortality in humans and poultry. A core genome analysis of 668 ST95 isolates generated 10 clades (A to J), 5 of which are reported here for the first time. F plasmid replicon sequence typing showed that almost a third (178/668 [27%]) of the collection carry pUTI89 (F29:B10) and were restricted to clade A and a sublineage of clade B. In contrast, almost half (328/668 [49%]) of the collection across multiple clades harbor ColV plasmids (multiple F types). Strikingly, ST95 lineages with pUTI89 were almost exclusively from humans, while ColV+ ST95 lineages were sourced from poultry and humans. Clade I was notable because it comprises temporally and geographically matched ColV+ isolates sourced from human and retail poultry meat, suggesting interspecies transmission via food. Clade F contained ST95 isolates of bovine origin, none of which carried ColV or pUTI89 plasmids. Remarkably, an analysis of a cohort of 34,176 E. coli isolates comprising 2,570 sequence types mirrored what was observed in ST95: (i) pUTI89 was overwhelmingly linked to E. coli sourced from humans but almost entirely absent from 13,027 E. coli isolates recovered from poultry, pigs, and cattle, and (ii) E. coli isolates harboring ColV plasmids were from multiple sources, including humans, poultry, and swine. Overall, our data suggest that F plasmids influence E. coli host range, clade structure, and zoonotic potential in ST95 and ExPEC more broadly. IMPORTANCE E. coli ST95 is one of five dominant ExPEC lineages globally and noted for causing urinary tract and bloodstream infections and neonatal meningitis in humans and colibacillosis in poultry. Using high-resolution phylogenomics, we show that F replicon sequence type is linked to ST95 clade structure and zoonotic potential. Specifically, human centric ST95 clades overwhelmingly harbor F29:B10 (pUTI89) plasmids, while clades carrying both human- and poultry-sourced isolates are typically ColV+ with multiple replicon types. Importantly, several clades identified clonal ColV+ ST95 isolates from human and poultry sources, but clade I, which housed temporally and spatially matched isolates, provided the most robust evidence. Notably, patterns of association of F replicon types with E. coli host were mirrored within a diverse collection of 34,176 E. coli genomes. Our studies indicate that the role of food animals as a source of human ExPEC disease is complex and warrants further investigation.

20 citations

Journal ArticleDOI
TL;DR: A critical review to identify gene targets that are most commonly measured by qPCR to quantify antibiotic resistance in surface water, recycled water, and wastewater and to assess corresponding protocols and recommend assays, standardized workflows, and reporting for the five target genes.
Abstract: Abstract Water environments are increasingly recognized as a conduit for the spread of antibiotic resistance, but there is need to standardize antibiotic resistance monitoring protocols to ensure comparability across studies. Quantitative polymerase chain reaction (qPCR) is attractive as a sensitive means of quantifying antibiotic resistance genes (ARGs) and has been applied broadly over the past two decades to various water matrices. QPCR avoids challenges and biases associated with culture-based methods, providing a reproducible and highly sensitive measure of ARGs carried across a bacterial community. However, there are numerous quality assurance and other aspects of protocols that need to be addressed to ensure that measurements are representative and comparable across studies. Here we conducted a critical review to identify gene targets that are most commonly measured by qPCR to quantify antibiotic resistance in surface water, recycled water, and wastewater and to assess corresponding protocols. Identified targets monitored in water samples included sul1, tetA, and intI1, given their abundance and tendency to correlate with anthropogenic inputs, and vanA and blaCTX-M, as more rarely detected, but highly clinically-relevant targets. We identified 117 peer-reviewed studies meeting search criteria for application of these assays to water matrices of interest and systematically assessed the corresponding protocols, including sample collection and concentration, DNA extraction, primer/probe specificity, amplification conditions, amplicon length, PCR inhibition evaluation, and limit of detection/quantification. Gene copy numbers reported across studies were further compared by assay and water matrix. Based on this comprehensive evaluation, we recommend assays, standardized workflows, and reporting for the five target genes. Graphical abstract

20 citations

Journal ArticleDOI
01 Oct 2020
TL;DR: The narGHIJ (nitrate reduction pathway) and gvpAFGOJLMK (gas vesicles) genetic maps of strains 335427T, 234509T, NBRC 100129T andNBRC 100374T showed the same syntenic block and raise the question of whether their functions are interlinked during the infection of the human host.
Abstract: Strains 335427T and 234509T, isolated from two 76-year-old patients with chronic pulmonary diseases, were the subject of polyphasic taxonomic studies and comparative genomic analyses for virulence factors. The 16 rRNA gene sequence similarity between strains 335427T and 234509T and their closest phylogenetic neighbors Nocardia asiatica NBRC 100129T and Nocardia abscessus NBRC 100374T were 99.5% and 100%, respectively. Digital DNA-DNA hybridization values between the aforementioned studied strains were well below the 70% threshold for assigning prokaryotic strains to a novel species. Strains 335427T and 234509T have genome sizes of 8.49 Mpb and 8.07 Mpb, respectively, with G + C content of 68.5%. Isolate 335427T has C16:0, C18:1 ω9c, C18:0 and C18:0 10 methyl as major fatty acids (>15%) and mycolic acids formed of 52-54 carbon atoms. However, only C18:1 ω9c was detected for isolate 234509T, which had mycolic acids with 44-56 carbon. Based on phenotypic and genetic data, strains 335427T (DSM 109819T = CECT 9924T) and 234509T (DSM 111366T = CECT 30129T) merit recognition as novel species, which are named Nocardia barduliensis sp. nov. and Nocardia gipuzkoensis sp. nov., respectively. All the strains studied had homologous VF-associated genes to those described in M. tuberculosis, including experimentally verified virulence genes in humans related to tuberculosis. The narGHIJ (nitrate reduction pathway) and gvpAFGOJLMK (gas vesicles) genetic maps of strains 335427T, 234509T, NBRC 100129T and NBRC 100374T showed the same syntenic block and raise the question of whether their functions are interlinked during the infection of the human host. However, further research is required to decipher the role of the gas vesicle in the pathogenicity mechanism of Nocardia spp.

20 citations

Journal ArticleDOI
TL;DR: In this paper , the authors conducted a comprehensive study of ARGs in mining-impacted environments worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts in China.
Abstract: Abstract Mining is among the human activities with widest environmental impacts, and mining-impacted environments are characterized by high levels of metals that can co-select for antibiotic resistance genes (ARGs) in microorganisms. However, ARGs in mining-impacted environments are still poorly understood. Here, we conducted a comprehensive study of ARGs in such environments worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts in China. The average total abundance of the ARGs in globally distributed studied mine sites was 1572 times per gigabase, being rivaling that of urban sewage but much higher than that of freshwater sediments. Multidrug resistance genes accounted for 40% of the total ARG abundance, tended to co-occur with multimetal resistance genes, and were highly mobile (e.g. on average 16% occurring on plasmids). Among the 1848 high-quality metagenome-assembled genomes (MAGs), 85% carried at least one multidrug resistance gene plus one multimetal resistance gene. These high-quality ARG-carrying MAGs considerably expanded the phylogenetic diversity of ARG hosts, providing the first representatives of ARG-carrying MAGs for the Archaea domain and three bacterial phyla. Moreover, 54 high-quality ARG-carrying MAGs were identified as potential pathogens. Our findings suggest that mining-impacted environments worldwide are underexplored hotspots of multidrug resistance genes.

19 citations

References
More filters
Journal ArticleDOI
TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.

88,255 citations


"CARD 2020: antibiotic resistome sur..." refers background in this paper

  • ...The latter is described by CARD’s Model Ontology (MO, Supplementary Figure S1), which includes reference nucleotide and protein sequences, as well as additional search parameters including mutations conferring AMR (if applicable) and curated BLAST(P/N) (34,35) bit score cut-offs....

    [...]

Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...Metagenomics analysis (i.e. RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

  • ...RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...In 2017, we described the CARD*Shark text-mining algorithm (26) for computer-assisted literature triage, which we have expanded based on the new ARO Drug Class classification tags....

    [...]

Journal ArticleDOI
TL;DR: The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences.
Abstract: Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications.

13,223 citations


"CARD 2020: antibiotic resistome sur..." refers background or methods in this paper

  • ...The website also includes a built-in BLAST instance for comparing sequences to CARD reference sequences and a web instance of RGI for resistome prediction with data visualization tools (https:// card.mcmaster.ca/analyze)....

    [...]

  • ...The RVM is functionally similar to the PVM, except it works for rRNA mutations and therefore uses a nucleotide reference sequence and a BLASTN bit score cut-off....

    [...]

  • ...Briefly, RGI algorithmically predicts AMR genes and mutations from submitted genomes using a combination of open reading frame prediction with Prodigal (38), sequence alignment with BLAST (35) or DIAMOND (39), and curated resistance mutations included with the AMR detection model....

    [...]

  • ...In the same time period, the CARD website hosted ∼45 000 BLAST analyses, ∼220 000 RGI analyses, ∼64 000 data file downloads, and ∼10,000 RGI software downloads....

    [...]

  • ...We had determined that the asymptotic nature of the BLAST expectation value (E) gave it very low discriminatory power between different -lactamase gene families (nearly 13 of CARD’s content), but that the linear nature of the BLAST bit score (S′) allowed this level of discrimination....

    [...]