scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database

TL;DR: A new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes, able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants.
Abstract: The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The PatRIC-genomes-AMR dataset as discussed by the authors is a set of assembled bacterial genome sequences that are paired with laboratory-derived antimicrobial susceptibility testing (AST) data, and it contains AST data for over 67 000 genomes encompassing approximately 40 genera and over 100 species.
Abstract: Antimicrobial resistance (AMR) is a major global health threat that affects millions of people each year. Funding agencies worldwide and the global research community have expended considerable capital and effort tracking the evolution and spread of AMR by isolating and sequencing bacterial strains and performing antimicrobial susceptibility testing (AST). For the last several years, we have been capturing these efforts by curating data from the literature and data resources and building a set of assembled bacterial genome sequences that are paired with laboratory-derived AST data. This collection currently contains AST data for over 67 000 genomes encompassing approximately 40 genera and over 100 species. In this paper, we describe the characteristics of this collection, highlighting areas where sampling is comparatively deep or shallow, and showing areas where attention is needed from the research community to improve sampling and tracking efforts. In addition to using the data to track the evolution and spread of AMR, it also serves as a useful starting point for building machine learning models for predicting AMR phenotypes. We demonstrate this by describing two machine learning models that are built from the entire dataset to show where the predictive power is comparatively high or low. This AMR metadata collection is freely available and maintained on the Bacterial and Viral Bioinformatics Center (BV-BRC) FTP site ftp://ftp.bvbrc.org/RELEASE_NOTES/PATRIC_genomes_AMR.txt.

9 citations

Journal ArticleDOI
TL;DR: The taxonomic reclassification in the past were inadequate for microbiologist and food industry professionals to demarcate any new strain of genus Leuconostoc, which is in utmost need of reinvestigation by whole genome-based approaches as mentioned in this paper .

9 citations

Journal ArticleDOI
TL;DR: In this article , an industrial-scale hydrothermal facility for the treatment of erythromycin fermentation residue (EFR) was investigated, and the potential risk of the long-term soil application of treated EFR promoting environmental antibiotic resistance development was evaluated.

9 citations

Journal ArticleDOI
TL;DR: In this article , the authors identified bacterial communities, including functional profiles of probiotics and antimicrobial resistance genes (ARGs), in pickled vegetables commonly consumed in the Middle Eastern, African, and Asian sub-continent regions.

9 citations

Journal ArticleDOI
TL;DR: The general antibiotic resistance characteristics of the genus Bifidobacterium were depicted by combining the reported phenotype dataset and in silico genotype prediction by predicted ARGs reasonably explained most of the corresponding resistant phenotypes in the published literature.
Abstract: Bifidobacteria are typical commensals inhabiting the human intestine and are beneficial to the host because of their probiotic properties. One of the risks concerning probiotics is the potential of introducing antibiotic resistance genes (ARGs) to the host gut pathogens. This study was aimed to depict the general antibiotic resistance characteristics of the genus Bifidobacterium by combining the reported phenotype dataset and in silico genotype prediction. Bifidobacteria were mostly reported to be sensitive to beta-lactams, glycopeptides, chloramphenicol, and rifampicin, but resistant to aminoglycosides, polypeptides, quinolones, and mupirocin. Generally, the resistance phenotypes to erythromycin, tetracycline, fusidic acid, metronidazole, clindamycin, and trimethoprim were variable. Besides cmX and tetQ, characterized in bifidobacterial resident plasmids, 3520 putative ARGs were identified from 831 bifidobacterial genomes through BLASTP search. The identified ARGs matched thirty-eight reference ARGs, four of which seemed to be mutant housekeeping genes. The two high-abundant ARGs, tetW and ermX, were found to have different distribution traits. The predicted ARGs reasonably explained most of the corresponding resistant phenotypes in the published literature.

9 citations

References
More filters
Journal ArticleDOI
TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.

88,255 citations


"CARD 2020: antibiotic resistome sur..." refers background in this paper

  • ...The latter is described by CARD’s Model Ontology (MO, Supplementary Figure S1), which includes reference nucleotide and protein sequences, as well as additional search parameters including mutations conferring AMR (if applicable) and curated BLAST(P/N) (34,35) bit score cut-offs....

    [...]

Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...Metagenomics analysis (i.e. RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

  • ...RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...In 2017, we described the CARD*Shark text-mining algorithm (26) for computer-assisted literature triage, which we have expanded based on the new ARO Drug Class classification tags....

    [...]

Journal ArticleDOI
TL;DR: The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences.
Abstract: Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications.

13,223 citations


"CARD 2020: antibiotic resistome sur..." refers background or methods in this paper

  • ...The website also includes a built-in BLAST instance for comparing sequences to CARD reference sequences and a web instance of RGI for resistome prediction with data visualization tools (https:// card.mcmaster.ca/analyze)....

    [...]

  • ...The RVM is functionally similar to the PVM, except it works for rRNA mutations and therefore uses a nucleotide reference sequence and a BLASTN bit score cut-off....

    [...]

  • ...Briefly, RGI algorithmically predicts AMR genes and mutations from submitted genomes using a combination of open reading frame prediction with Prodigal (38), sequence alignment with BLAST (35) or DIAMOND (39), and curated resistance mutations included with the AMR detection model....

    [...]

  • ...In the same time period, the CARD website hosted ∼45 000 BLAST analyses, ∼220 000 RGI analyses, ∼64 000 data file downloads, and ∼10,000 RGI software downloads....

    [...]

  • ...We had determined that the asymptotic nature of the BLAST expectation value (E) gave it very low discriminatory power between different -lactamase gene families (nearly 13 of CARD’s content), but that the linear nature of the BLAST bit score (S′) allowed this level of discrimination....

    [...]