scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database

TL;DR: A new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes, able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants.
Abstract: The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a novel strain of Janthinobacterium tructae (SNU WT3) was identified from the kidney of rainbow trout and a phylogenetic study using 16S rRNA sequences indicated that the strain is closely related to Janthinibacterium svalbardensis JA-1T.
Abstract: This study presents a novel Janthinobacterium strain, SNU WT3, isolated from the kidney of rainbow trout. A phylogenetic study using 16S rRNA sequences indicated that the strain is closely related to Janthinobacterium svalbardensis JA-1T. However, biochemical analysis found differences in D-xylose adonitol, N-acetylglucosamine, arbutin, and cellobiose. As for genome-to-genome distance and average nucleotide identity values calculated between strain SNU WT3 and other related strains such as J. lividum EIF1, J. svalbardensis PAMC 27463, and J. agaricidamnosum BHSEK were all below the cutoff value between species. DNA-DNA hybridization between strain SNU WT3 and other close relatives indicated the results of J. lividum DSM 1522T (47.11%) and J. svalbardensis JA-1T (38.88%) individually. The major fatty acid compositions of strain SNU WT3 were cylco-C17:0 (41.45%), C16:0 (33.86%) and C12:0 (5.87%). The major polar lipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, and diphosphatidylglycerol. The quinone system was composed mainly of ubiquinone Q-8. The genome of strain SNU WT3 consists of 6,314,370 bp with a G + C content of 62.35%. Here, we describe a novel species of the genus Janthinobacterium, and the name Janthinobacterium tructae has been proposed with SNU WT3T (=KCTC 72518 = JCM 33613) as the type strain.

6 citations

Journal ArticleDOI
TL;DR: M. fortuitum was revealed as a reservoir of an expressive intrinsic resistome, as well as a virulome that may contribute to its success as a global opportunist pathogen.
Abstract: BACKGROUND Mycolicibacterium fortuitum is an opportunistic pathogen associated with human and animal infection worldwide. Studies concerning this species are mainly represented by case reports, some of them addressing drug susceptibility with a focus on a specific geographic region, so there is a gap in relation to the global epidemiological scenario. OBJECTIVES We aimed determine the global epidemiological scenario of M. fortuitum and analyse its traits associated with pathogenicity. METHODS Based on publicly available genomes of M. fortuitum and a genome from Brazil (this study), we performed a genomic epidemiology analysis and in silico and in vitro characterisation of the resistome and virulome of this species. FINDINGS Three main clusters were defined, one including isolates from the environment, human and animal infections recovered over nearly a century. An apparent intrinsic resistome comprises mechanisms associated with macrolides, beta-lactams, aminoglycosides and antitubercular drugs such as rifampin. Besides, the virulome presented Type VII secretion systems (T7SS), including ESX-1, ESX-3, ESX-4 and ESX-4-bis, some of which play a role on the virulence of Mycobacteriaceae species. MAIN CONCLUSIONS Here, M. fortuitum was revealed as a reservoir of an expressive intrinsic resistome, as well as a virulome that may contribute to its success as a global opportunist pathogen.

6 citations

Journal ArticleDOI
17 Nov 2021
TL;DR: In this paper, the authors investigated the association between antiseptic use and bacterial susceptibility and found that long-term CHG use may select for CHG and OCT tolerance in CoNS.
Abstract: Background Intravascular catheters are essential for care in Neonatal Intensive Care Units (NICUs) but predispose infants to catheter-associated infections including late-onset sepsis, commonly caused by CoNS. Antiseptics are applied to prevent infection with chlorhexidine (CHG) and octenidine (OCT) the most common agents used. Objectives To investigate the association between antiseptic use and bacterial susceptibility. Methods CoNS isolates were collected from two NICUs with differing antiseptic regimens: Norwich, UK (using CHG) and Lubeck, Germany (using OCT). CoNS were isolated from different body sites of babies upon admission, and weekly thereafter. Antiseptic susceptibility testing was performed, and a selection underwent genome sequencing. Results A total of 1274 isolates were collected. UK isolates (n = 863) were significantly less susceptible than German isolates (n = 411) to both CHG (mean MIC: 20.1 mg/L versus 8.9 mg/L) and OCT (mean MIC: 2.3 mg/L versus 1.6 mg/L). UK isolates taken on admission were more susceptible to CHG than subsequent isolates. No cross-resistance between the agents was seen. Genome sequencing of 122 CoNS showed the most common species to be Staphylococcus epidermidis and Staphylococcus haemolyticus and phylogenetic analysis suggested antiseptic tolerance evolved multiple times in independent lineages. There was no evidence of dominant antiseptic tolerant clones and carriage of genes previously implicated in antimicrobial susceptibility (qac, smr, norA/B), did not correlate with CHG or OCT susceptibility. Conclusions Long-term CHG use may select for CHG and OCT tolerance in CoNS. This highlights the different potential for separate antiseptic regimens to select for resistance development. This could be an important factor in developing future infection control policies.

6 citations

Journal ArticleDOI
TL;DR: An analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems makes several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encodingcarbapenemase blaGES-5 or extended-spectrum β-lactamases blaOXA alleles.
Abstract: Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to “last-resort drugs,” such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. ABSTRACT Comamonas spp. are Gram-negative bacteria that catabolize a wide range of organic and inorganic substrates. Comamonas spp. are abundant in aquatic and soil environments, including wastewater, and can cause opportunistic infections in humans. Because of their potential in wastewater bioaugmentation and bioremediation strategies, the identification of Comamonas species harboring genes encoding carbapenemases and other clinically important antibiotic resistance genes warrant further investigation. Here, we present an analysis of 39 whole-genome sequences comprising three Comamonas species from aquatic environments in South Australia that were recovered on media supplemented with carbapenems. The analysis includes a detailed description of 33 Comamonas denitrificans isolates, some of which carried chromosomally acquired blaGES-5, blaOXA, and aminoglycoside resistance (aadA) genes located on putative genomic islands (GIs). All blaGES-5- and blaOXA-containing GIs appear to be unique to this Australian collection of C. denitrificans. Notably, most open reading frames (ORFs) within the GIs, including all antimicrobial resistance (AMR) genes, had adjacent attC sites, indicating that these ORFs are mobile gene cassettes. One C. denitrificans isolate carried an IncP-1 plasmid with genes involved in xenobiotic degradation and response to oxidative stress. Our assessment of the sequences highlights the very distant nature of C. denitrificans to the other Comamonas species and its apparent disposition to acquire antimicrobial resistance genes on putative genomic islands. IMPORTANCE Antimicrobial resistance (AMR) poses a global public health threat, and the increase in resistance to “last-resort drugs,” such as carbapenems, is alarming. Wastewater has been flagged as a hot spot for AMR evolution. Comamonas spp. are among the most common bacteria in wastewater and play a role in its bioaugmentation. While the ability of Comamonas species to catabolize a wide range of organic and inorganic substrates is well documented, some species are also opportunistic pathogens. However, data regarding AMR in Comamonas spp. are limited. Here, through the genomic analyses of 39 carbapenem-resistant Comamonas isolates, we make several key observations, including the identification of a subset of C. denitrificans isolates that harbored genomic islands encoding carbapenemase blaGES-5 or extended-spectrum β-lactamase blaOXA alleles. Given the importance of Comamonas species in potential wastewater bioaugmentation and bioremediation strategies, as well as their status as emerging pathogens, the acquisition of critically important antibiotic resistance genes on genomic islands warrants future monitoring.

6 citations

Journal ArticleDOI
TL;DR: In this paper , the authors proposed dihydroorotase as a significant drug target in S. flexneri and 4-tritriacontanone & patupilone compounds as potent drugs against shigellosis.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.

88,255 citations


"CARD 2020: antibiotic resistome sur..." refers background in this paper

  • ...The latter is described by CARD’s Model Ontology (MO, Supplementary Figure S1), which includes reference nucleotide and protein sequences, as well as additional search parameters including mutations conferring AMR (if applicable) and curated BLAST(P/N) (34,35) bit score cut-offs....

    [...]

Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...Metagenomics analysis (i.e. RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

  • ...RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...In 2017, we described the CARD*Shark text-mining algorithm (26) for computer-assisted literature triage, which we have expanded based on the new ARO Drug Class classification tags....

    [...]

Journal ArticleDOI
TL;DR: The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences.
Abstract: Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications.

13,223 citations


"CARD 2020: antibiotic resistome sur..." refers background or methods in this paper

  • ...The website also includes a built-in BLAST instance for comparing sequences to CARD reference sequences and a web instance of RGI for resistome prediction with data visualization tools (https:// card.mcmaster.ca/analyze)....

    [...]

  • ...The RVM is functionally similar to the PVM, except it works for rRNA mutations and therefore uses a nucleotide reference sequence and a BLASTN bit score cut-off....

    [...]

  • ...Briefly, RGI algorithmically predicts AMR genes and mutations from submitted genomes using a combination of open reading frame prediction with Prodigal (38), sequence alignment with BLAST (35) or DIAMOND (39), and curated resistance mutations included with the AMR detection model....

    [...]

  • ...In the same time period, the CARD website hosted ∼45 000 BLAST analyses, ∼220 000 RGI analyses, ∼64 000 data file downloads, and ∼10,000 RGI software downloads....

    [...]

  • ...We had determined that the asymptotic nature of the BLAST expectation value (E) gave it very low discriminatory power between different -lactamase gene families (nearly 13 of CARD’s content), but that the linear nature of the BLAST bit score (S′) allowed this level of discrimination....

    [...]