scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database

TL;DR: A new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes, able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants.
Abstract: The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In silico investigations of whole genome sequencing data, the genetic features of Lactococcus lactis strains revealed that can be associated with functional and safety aspects of the strains, confirming their health-promoting potential.
Abstract: Lactic acid bacteria (LAB) are Gram-positive bacteria which are considered for use as adjuvant therapeutics in management of various disease ailments, including obesity, irritable bowel syndrome, lactose intolerance and cancer. To investigate the possible use of Lactococcus lactis strains from our collection in treatment of gastrointestinal cancer, we tested them for the ability to arrest proliferation of human colorectal adenocarcinoma cells (Caco-2). Results of the BrdU assay showed that the anti-proliferative activity of L. lactis cells is strain-specific. We found that particularly, two strains, L. lactis IBB109 and L. lactis IBB417, exhibited the most potent inhibitory effect. Moreover, both strains triggered interleukin 18 gene expression, normally inhibited in Caco-2 (cancer) cells. To examine the probiotic potential of the two strains, we tested them for bile salts and acid tolerance, as well as adhesion properties. Both isolates exhibited probiotic potential—they survived in the presence of 0.3% bile salts and tolerated exposure to low pH and osmotic stress. Notably, we found that L. lactis IBB417 displayed better adherence to mucus and Caco-2 cells than L. lactis IBB109. Additionally, by microdilution tests we confirmed that both strains are sensitive to all nine antibiotics of human and veterinary importance listed by the European Food Safety Authority. Finally, by in silico investigations of whole genome sequencing data, we revealed the genetic features of L. lactis IBB109 and L. lactis IBB417 that can be associated with functional (e.g., adhesion and carbohydrate metabolic genes) and safety (e.g., virulence and antibiotic resistance) aspects of the strains, confirming their health-promoting potential.

6 citations

Journal ArticleDOI
02 Jul 2021
TL;DR: In this article, the ability to adhere and invade the human colonic cell line HT29-MTX-E12 of strains of P. dorei, B. uniformis and P. distasonis was determined and their whole genome sequencing was performed.
Abstract: In our previous study the enrichment of the intestinal proteome of type 1 diabetes (T1D) children with Bacteroides proteins was observed, which led us to our current study that aimed to isolate and characterize Bacteroides species from fecal samples of T1D and control children. Repetitive sequence-based PCR (rep-PCR) was used for typing the isolated Bacteroides species. The antibiotic susceptibility and mucinolytic activity of the isolates was determined. The quantification of specific bacterial groups in the fecal samples was determined by qPCR. The ability to adhere and invade the human colonic cell line HT29-MTX-E12 of strains of P. dorei, B. uniformis and P. distasonis was determined and their whole genome sequencing was performed. The results showed similar numbers of Bacteroides species in T1D and control samples, but unique Bacteroides species and a higher recovery of P. distasonis from T1D samples was observed. Rep-PCR grouped the different Bacteroides species, but no discrimination by origin was achieved. T1D children showed a significant increase in Proteobacteria and a depletion in Lactobacillus sp. All tested P. dorei, B. uniformis and P. distasonis were able to adhere to HT29-MTX-E12 cells but significant differences (p < 0.05) in the ability to invade was observed. The highest ability to invade was exhibited by P. distasonis PtF D14MH1 and P. dorei PtFD16P1, while B. uniformis strains were unable to invade. The damage to tight junctions was also observed. The presence of Lactobacillus sp. inhibited the invasion ability of P. distasonis PtF D14MH1 but not P. dorei PtFD16P1. Sequences of agonist peptides of the human natural preproinsulin and the insulin B chain insB:9-23 peptide mimics were identified. The results reported in our study stresses the continued efforts required to clarify the link between T1D and gut microbiota.

6 citations

Journal ArticleDOI
TL;DR: In this article , the role of MexXY-OprM and its repressor, MexZ, in clinical isolates of Pseudomonas aeruginosa was investigated.
Abstract: Introduction. Aminoglycoside antibiotics are widely used to treat infections of Pseudomonas aeruginosa. The MexXY-OprM efflux pump is an important contributor to aminoglycoside tolerance in P. aeruginosa reference strains and expression of the mexXY genes is repressed by the MexZ repressor protein. Direct investigation of the role of this efflux pump in clinical isolates is relatively limited.Hypothesis. The contribution of MexXY-OprM to P. aeruginosa aminoglycoside resistance is isolate-specific.Aim. To quantify the role of MexXY-OprM and its repressor, MexZ, in clinical isolates of P. aeruginosa.Methodology. The mexXY genes were deleted from ten clinical isolates of P. aeruginosa, and the mexZ gene from nine isolates. Antimicrobial susceptibility testing was carried out for commonly used antipseudomonal drugs on the engineered mutants and the isogenic wild-type isolates. RT-qPCR was used to measure expression of the mexX gene.Results. All but one of the mexXY mutants were more susceptible to the clinically used aminoglycosides tobramycin, gentamicin and amikacin but the degree to which susceptibility increased varied greatly between isolates. The mexXY mutants were also more susceptible to a fluoroquinolone, ciprofloxacin. In three isolates with functional MexZ, deletion of mexZ increased expression of mexXY and aminoglycoside tolerance. Conversely, deleting mexZ from six clinical isolates with mexZ sequence variants had little or no effect on expression of mexXY or on aminoglycoside susceptibility, consistent with the variants abolishing MexZ function. Genome analysis showed that over 50 % of 619 clinical isolates had sequence variants predicted to reduce the affinity of MexZ for DNA, likely increasing mexXY expression and hence efflux of aminoglycosides.Conclusion. Our findings show that the interplay between MexXY, MexZ and the level of mexXY expression plays an important role in aminoglycoside resistance in clinical isolates of P. aeruginosa but the magnitude of the contribution of this efflux pump to resistance is isolate-specific.

6 citations

Posted ContentDOI
20 May 2020-bioRxiv
TL;DR: Reads2Resistome is a tool which allows researchers to assemble and annotate bacterial genomes using long or short read sequencing technologies or both in a hybrid approach with the goal of producing an accurate and comprehensive description of a bacterial genome and resistome contents.
Abstract: Summary: The bacterial resistome is the collection of all the antibiotic resistance genes, virulence genes, and other resistance elements within a bacterial isolate genome including plasmids and bacteriophage regions. Accurately characterizing the resistome is crucial for prevention and mitigation of emerging antibiotic resistance threats to animal and human health. Reads2Resistome is a tool which allows researchers to assemble and annotate bacterial genomes using long or short read sequencing technologies or both in a hybrid approach. Using a massively parallel analysis pipeline, Reads2Resistome performs assembly, annotation and resistome characterization with the goal of producing an accurate and comprehensive description of a bacterial genome and resistome contents. Key features of the Reads2Resistome pipeline include quality control of input sequencing reads, genome assembly, genome annotation, resistome characterization and alignment. All prerequisite dependencies come packaged together in a single suit which can easily be downloaded and run on Linux and Mac operating systems. Availability: Reads2Resistome is freely available as an open-source package under the MIT license, and can be downloaded via GitHub (https://github.com/BioRRW/Reads2Resistome).

6 citations


Cites methods from "CARD 2020: antibiotic resistome sur..."

  • ...ABRICATE uses the assembled contigs to screen for antimicrobial and virulence genes from various databases; ARGANNOT antibiotic resistance gene database [16], the Comprehensive Antibiotic Resistance Database (CARD) [17], MEGARes Antimicrobial Database for High-Throughput Sequencing [18], NCBI AMRFinderPlus [19], PlasmidFinder [20], ResFinder [21] and VirulenceFinder database [22]....

    [...]

  • ...ABRICATE uses the assembled contigs to screen for antimicrobial and virulence genes from various databases; ARG-ANNOT antibiotic resistance gene database [16], the Comprehensive Antibiotic Resistance Database (CARD) [17], MEGARes Antimicrobial Database for High-Throughput Sequencing [18], NCBI AMRFinderPlus [19], PlasmidFinder [20], ResFinder [21] and VirulenceFinder database [22]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.

88,255 citations


"CARD 2020: antibiotic resistome sur..." refers background in this paper

  • ...The latter is described by CARD’s Model Ontology (MO, Supplementary Figure S1), which includes reference nucleotide and protein sequences, as well as additional search parameters including mutations conferring AMR (if applicable) and curated BLAST(P/N) (34,35) bit score cut-offs....

    [...]

Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...Metagenomics analysis (i.e. RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

  • ...RGI bwt) uses Bowtie2 (40) or BWA (41) mapping of sequencing reads to CARD’s PHM reference sequences only, while annotation of genomes or assembly contigs predicts resistome using four of CARD’s AMR detection models: PHM, PVM, RVM and POM (note: RGI currently only scans for nonsynonymous substitutions; not frameshifts, deletions or insertions)....

    [...]

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations


"CARD 2020: antibiotic resistome sur..." refers methods in this paper

  • ...In 2017, we described the CARD*Shark text-mining algorithm (26) for computer-assisted literature triage, which we have expanded based on the new ARO Drug Class classification tags....

    [...]

Journal ArticleDOI
TL;DR: The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences.
Abstract: Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications.

13,223 citations


"CARD 2020: antibiotic resistome sur..." refers background or methods in this paper

  • ...The website also includes a built-in BLAST instance for comparing sequences to CARD reference sequences and a web instance of RGI for resistome prediction with data visualization tools (https:// card.mcmaster.ca/analyze)....

    [...]

  • ...The RVM is functionally similar to the PVM, except it works for rRNA mutations and therefore uses a nucleotide reference sequence and a BLASTN bit score cut-off....

    [...]

  • ...Briefly, RGI algorithmically predicts AMR genes and mutations from submitted genomes using a combination of open reading frame prediction with Prodigal (38), sequence alignment with BLAST (35) or DIAMOND (39), and curated resistance mutations included with the AMR detection model....

    [...]

  • ...In the same time period, the CARD website hosted ∼45 000 BLAST analyses, ∼220 000 RGI analyses, ∼64 000 data file downloads, and ∼10,000 RGI software downloads....

    [...]

  • ...We had determined that the asymptotic nature of the BLAST expectation value (E) gave it very low discriminatory power between different -lactamase gene families (nearly 13 of CARD’s content), but that the linear nature of the BLAST bit score (S′) allowed this level of discrimination....

    [...]