Cardiac α-Actin (ACTC1) Gene Mutation Causes Atrial-Septal Defects Associated With Late-Onset Dilated Cardiomyopathy.
01 Aug 2019-Vol. 12, Iss: 8, pp 345-356
TL;DR: A combined phenotype of ASD and late-onset heart failure was caused by a heterozygous, nonsynonymous ACTC1 mutation, and a shared molecular mechanism of defective actin signaling and polymerization in both cardiac development and contractile function was found.
Abstract: Background: Familial atrial septal defect (ASD) has previously been attributed primarily to mutations in cardiac transcription factors. Here, we report a large, multi-generational family (78 member...
Citations
More filters
[...]
TL;DR: Graphene-based surfaces represent promising materials that may influence the therapeutic application of MSCs via supporting their pro-regenerative potential, and it is demonstrated that both materials promoted the cardiomyogenic and angiogenic differentiation capacity of M SCs in vitro.
Abstract: Cell-based therapies have recently emerged as promising strategies for the treatment of cardiovascular disease. Mesenchymal stem cells (MSCs) are a promising cell type that represent a class of adult stem cells characterized by multipotency, high proliferative capacity, paracrine activity, and low immunogenicity. To improve the functional and therapeutic efficacy of MSCs, novel biomaterials are considered as scaffolds/surfaces that promote MSCs growth and differentiation. One of them are graphene-based materials, including graphene oxide (GO) and reduced graphene oxide (rGO). Due to the unique physical, chemical, and biological properties of graphene, scaffolds comprising GO/rGO have been examined as novel platforms to improve the differentiation potential of human MSCs in vitro. We verified different i) size of GO flakes, ii) reduction level, and iii) layer thickness to select the most suitable artificial niche for MSCs culture. The results revealed that graphene-based substrates constitute non-toxic substrates for MSCs. Surfaces with large flakes of GO as well as low reduced rGO are the most biocompatible for MSCs propagation and do not affect their proliferation and survival. Interestingly, small GO flakes and highly reduced rGO decreased MSCs proliferation and induced their apoptosis. We also found that GO and rGO substrates did not alter the MSCs phenotype, cell cycle progression and might modulate the adhesive capabilities of these cells. Importantly, we demonstrated that both materials promoted the cardiomyogenic and angiogenic differentiation capacity of MSCs in vitro. Thus, our data indicates that graphene-based surfaces represent promising materials that may influence the therapeutic application of MSCs via supporting their pro-regenerative potential.
5 citations
[...]
TL;DR: The data suggests that human G247D ACTC1 mutation negatively regulates SRF-signaling likely contributing to the late-onset DCM observed in mutation carrier patients.
Abstract: We recently identified a novel, heterozygous, and non-synonymous ACTC1 mutation (p.Gly247Asp or G247D) in a large, multi-generational family, causing atrial-septal defect followed by late-onset dilated cardiomyopathy (DCM). Molecular dynamics studies revealed possible actin polymerization defects as G247D mutation resides at the juncture of side-chain interaction, which was indeed confirmed by in vitro actin polymerization assays. Since polymerization/de-polymerization is important for the activation of Rho-GTPase-mediated serum response factor (SRF)-signaling, we studied the effect of G247D mutation using luciferase assay. Overexpression of native human ACTC1 in neonatal rat cardiomyocytes (NRVCMs) strongly activated SRF-signaling both in C2C12 cells and NRVCMs, whereas, G247D mutation abolished this activation. Mechanistically, we found reduced GTP-bound Rho-GTPase and increased nuclear localization of globular actin in NRVCMs overexpressing mutant ACTC1 possibly causing inhibition of SRF-signaling activation. In conclusion, our data suggests that human G247D ACTC1 mutation negatively regulates SRF-signaling likely contributing to the late-onset DCM observed in mutation carrier patients.
4 citations
[...]
TL;DR: Whole genome sequencing in multiplex families, proband-parent trios, and case-control cohorts revealed defects in cardiomyopathy-associated genes in patients with HLHS, which may portend impaired functional reserve of the single-ventricle circulation.
Abstract: Background: Hypoplastic left heart syndrome (HLHS) with risk of poor outcome has been linked to MYH6 variants, implicating overlap in genetic etiologies of structural and myopathic heart disease. M...
3 citations
[...]
TL;DR: In this paper , a new locus for Dilated Cardiomyopathy (DCM) was mapped on chromosome 15q13.1 − q13.3, with the largest 2-point logarithm of odds score of 5.1175 for the marker D15S165 at recombination fraction (θ)=0.77cM (≈3.43mbp).
Abstract: Background Dilated cardiomyopathy (DCM), characterized by progressive left ventricular enlargement and systolic dysfunction, is the most common type of cardiomyopathy and a leading cause of heart failure and cardiac death. Accumulating evidence underscores the critical role of genetic defects in the pathogenesis of DCM, and >250 genes have been implicated in DCM to date. However, DCM is of substantial genetic heterogeneity, and the genetic basis underpinning DCM remains elusive in most cases. Methods and Results By genome‐wide scan with microsatellite markers and genetic linkage analysis in a 4‐generation family inflicted with autosomal‐dominant DCM, a new locus for DCM was mapped on chromosome 15q13.1–q13.3, a 4.77‐cM (≈3.43 Mbp) interval between markers D15S1019 and D15S1010, with the largest 2‐point logarithm of odds score of 5.1175 for the marker D15S165 at recombination fraction (θ)=0.00. Whole‐exome sequencing analyses revealed that within the mapping chromosomal region, only the mutation in the KLF13 gene, c.430G>T (p.E144X), cosegregated with DCM in the family. In addition, sequencing analyses of KLF13 in another cohort of 266 unrelated patients with DCM and their available family members unveiled 2 new mutations, c.580G>T (p.E194X) and c.595T>C (p.C199R), which cosegregated with DCM in 2 families, respectively. The 3 mutations were absent from 418 healthy subjects. Functional assays demonstrated that the 3 mutants had no transactivation on the target genes ACTC1 and MYH7 (2 genes causally linked to DCM), alone or together with GATA4 (another gene contributing to DCM), and a diminished ability to bind the promoters of ACTC1 and MYH7. Add, the E144X‐mutant KLF13 showed a defect in intracellular distribution. Conclusions This investigation indicates KLF13 as a new gene predisposing to DCM, which adds novel insight to the molecular pathogenesis underlying DCM, implying potential implications for prenatal prevention and precision treatment of DCM in a subset of patients.
3 citations
[...]
TL;DR: In this paper , the role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients.
Abstract: Background: Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. Methods: The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. Results: We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25−/− mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. Conclusions: We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.
3 citations
References
More filters
[...]
TL;DR: An environment for comparative protein modeling is developed that consists of SWISS‐MODEL, a server for automated comparativeprotein modeling and of the SWiss‐PdbViewer, a sequence to structure workbench that provides a large selection of structure analysis and display tools.
Abstract: Comparative protein modeling is increasingly gaining interest since it is of great assistance during the rational design of mutagenesis experiments. The availability of this method, and the resulting models, has however been restricted by the availability of expensive computer hardware and software. To overcome these limitations, we have developed an environment for comparative protein modeling that consists of SWISS-MODEL, a server for automated comparative protein modeling and of the SWISS-PdbViewer, a sequence to structure workbench. The Swiss-PdbViewer not only acts as a client for SWISS-MODEL, but also provides a large selection of structure analysis and display tools. In addition, we provide the SWISS-MODEL Repository, a database containing more than 3500 automatically generated protein models. By making such tools freely available to the scientific community, we hope to increase the use of protein structures and models in the process of experiment design.
10,197 citations
[...]
TL;DR: Patients with hereditary idiopathic dilated cardiomyopathy were examined for mutations in the cardiac actin gene, raising the possibility that defective transmission of force in cardiac myocytes is a mechanism underlying heart failure.
Abstract: Two mutations in the human cardiac actin gene are disclosed which have been associated with idiopathic dilated cardiomyopathy (IDC) in two families. These mutations cosegregate with IDC in the two families. Both mutations affect universally conserved amino acids in domains of actin that attach to Z bands and intercalated discs. Analysis of the cardiac actin gene can be used to determine the presence in a patient of IDC resulting from mutations in this gene. Such analysis is useful in the diagnosis and prognosis of the disease in patients with mutations in this gene.
706 citations
[...]
University of New South Wales1, Victor Chang Cardiac Research Institute2, Boston Children's Hospital3, Federal University of Rio de Janeiro4, University of Cincinnati5, Children's Hospital at Westmead6, University of Sydney7, St. Vincent's Health System8, Kangwon National University9, Griffith University10
TL;DR: In this article, the T-box family transcription factor gene TBX20 was linked to CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis.
Abstract: The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference–mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.
285 citations
[...]
Boston Children's Hospital1, Victor Chang Cardiac Research Institute2, University of New South Wales3, Federal University of Rio de Janeiro4, University of Cincinnati5, University of Sydney6, Children's Hospital at Westmead7, St. Vincent's Health System8, Kangwon National University9, Griffith University10
TL;DR: These findings are the first to link TBX20 mutations to human pathology and provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.
Abstract: The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.
269 citations
[...]
TL;DR: Morpholino knock-down of expression of the chick MYH6 homolog eliminates the formation of the atrial septum without overtly affecting atrial chamber formation, providing evidence for a link between a transcription factor, a structural protein and congenital heart disease.
Abstract: Atrial septal defect is one of the most common forms of congenital heart malformation. We identified a new locus linked with atrial septal defect on chromosome 14q12 in a large family with dominantly inherited atrial septal defect. The underlying mutation is a missense substitution, I820N, in α-myosin heavy chain (MYH6), a structural protein expressed at high levels in the developing atria, which affects the binding of the heavy chain to its regulatory light chain. The cardiac transcription factor TBX5 strongly regulates expression of MYH6, but mutant forms of TBX5, which cause Holt-Oram syndrome, do not. Morpholino knock-down of expression of the chick MYH6 homolog eliminates the formation of the atrial septum without overtly affecting atrial chamber formation. These data provide evidence for a link between a transcription factor, a structural protein and congenital heart disease.
245 citations