scispace - formally typeset
Search or ask a question
Book ChapterDOI

Cartilage 3D Printing

01 Jan 2015-pp 265-280
TL;DR: This chapter introduces the structure and function of articular cartilage, provides a brief overview of the cartilage injury and degeneration, and lists the challenges of cell-based repair.
Abstract: Cartilage is a tissue designed to provide near frictionless joint movement while withstanding load during locomotion. Clinically relevant repair or regeneration of damaged or degenerated cartilage remains a challenge. Recapitulation of the matrix structure and cellular organization in repair tissues is key to generating long-term functional repair tissue. 3D bioprinting is a promising technique that can address many of the challenges facing successful tissue engineering of articular cartilage. This chapter introduces the structure and function of articular cartilage, provides a brief overview of the cartilage injury and degeneration, and lists the challenges of cell-based repair. The state-of-the-art in 3D bioprinting technologies is discussed with a focus on 3D printing of cartilage and recent advances in the concept of direct in situ 3D printing. Finally, the challenges of using this technology are presented, as well as a perspective on the future of 3D bioprinting for cartilage tissue engineering and regenerative medicine.
Citations
More filters
01 Jan 2009
TL;DR: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks.
Abstract: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks. The microtissues and tissue spheroids are living materials with certain measurable, evolving and potentially controllable composition, material and biological properties. Closely placed tissue spheroids undergo tissue fusion - a process that represents a fundamental biological and biophysical principle of developmental biology-inspired directed tissue self-assembly. It is possible to engineer small segments of an intraorgan branched vascular tree by using solid and lumenized vascular tissue spheroids. Organ printing could dramatically enhance and transform the field of tissue engineering by enabling large-scale industrial robotic biofabrication of living human organ constructs with "built-in" perfusable intraorgan branched vascular tree. Thus, organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.

942 citations

01 Jan 2012
TL;DR: The use of a 3D fiber deposition (3DF) technique for the fabrication of cell-laden, heterogeneous hydrogel constructs for potential use as osteochondral grafts is characterized and the possibility of manufacturing viable centimeter-scaled structured tissues by the 3DF technique is demonstrated.
Abstract: Osteochondral defects are prone to induce osteoarthritic degenerative changes. Many tissue-engineering approaches that aim to generate osteochondral implants suffer from poor tissue formation and compromised integration. This illustrates the need for further improvement of heterogeneous tissue constructs. Engineering of these structures is expected to profit from strategies addressing the complexity of tissue organization and the simultaneous use of multiple cell types. Moreover, this enables the investigation of the effects of three-dimensional (3D) organization and architecture on tissue function. In the present study, we characterize the use of a 3D fiber deposition (3DF) technique for the fabrication of cell-laden, heterogeneous hydrogel constructs for potential use as osteochondral grafts. Changing fiber spacing or angle of fiber deposition yielded scaffolds of varying porosity and elastic modulus. We encapsulated and printed fluorescently labeled human chondrocytes and osteogenic progenitors in alginate hydrogel yielding scaffolds of 1×2 cm with different parts for both cell types. Cell viability remained high throughout the printing process, and cells remained in their compartment of the printed scaffold for the whole culture period. Moreover, distinctive tissue formation was observed, both in vitro after 3 weeks and in vivo (6 weeks subcutaneously in immunodeficient mice), at different locations within one construct. These results demonstrate the possibility of manufacturing viable centimeter-scaled structured tissues by the 3DF technique, which could potentially be used for the repair of osteochondral defects.

319 citations

08 Sep 2009
TL;DR: Hydrogel-based tissue-engineering strategies have recently been developed to form constructs with biomimetic zonal variations to improve cartilage repair, and these technologies have great potential to address many unanswered questions involved in prescribing zonal properties to tissue-engineered constructs forcartilage repair.
Abstract: Articular cartilage is a highly hydrated tissue with depth-dependent cellular and matrix properties that provide low-friction load bearing in joints. However, the structure and function are frequently lost and there is insufficient repair response to regenerate high-quality cartilage. Several hydrogel-based tissue-engineering strategies have recently been developed to form constructs with biomimetic zonal variations to improve cartilage repair. Modular hydrogel systems allow for systematic control over hydrogel properties, and advanced fabrication techniques allow for control over construct organization. These technologies have great potential to address many unanswered questions involved in prescribing zonal properties to tissue-engineered constructs for cartilage repair.

18 citations

Journal ArticleDOI
TL;DR: Extrusion-based bioprinting (EBB) is a biofabrication technique that has been widely used by researchers in the last two decades, mainly due to its versatility, ease to use, and low cost as discussed by the authors .

7 citations

References
More filters
Journal ArticleDOI
TL;DR: A fully biological self-assembly approach, which is implemented through a rapid prototyping bioprinting method for scaffold-free small diameter vascular reconstruction and has the ability to engineer vessels of distinct shapes and hierarchical trees that combine tubes of distinct diameters.

1,208 citations

Journal ArticleDOI
TL;DR: An overview on the different rapid prototyping techniques suitable for the processing of hydrogel materials, and a primary distinction will be made between (i) laser-based, (ii) nozzle- based, and (iii) printer-based systems.

1,050 citations

Journal ArticleDOI
TL;DR: Organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.

1,043 citations

Journal Article
TL;DR: The available evidence indicates that normal matrix turnover depends on the ability of chondrocytes to detect alterations in the macromolecular composition and organization of the matrix, including the presence of degraded molecules, and to respond by synthesizing appropriate types and amounts of new molecules.
Abstract: The unique biologic and mechanical properties of articular cartilage depend on the design of the tissue and the interactions between the chondrocytes and the matrix that maintain the tissue. Chondrocytes form the macromolecular framework of the tissue matrix from three classes of molecules: collagens, proteoglycans, and noncollagenous proteins. Type II, IX, and XI collagens form a fibrillar meshwork that gives the tissue as form and tensile stiffness and strength. Type VI collagen forms part of the matrix immediately surrounding the chondrocytes and may help the chondrocytes to attach to the macromolecular framework of the matrix. Large aggregating proteoglycans (aggrecans) give the tissue its stiffness to compression and its resilience and contribute to its durability. Small proteoglycans, including decorin, biglycan, and fibromodulin, bind to other matrix macromolecules and thereby help to stabilize the matrix. They may also influence the function of the chondrocytes and bind growth factors. Anchorin CII, a noncollagenous protein, appears to help to anchor chondrocytes to the matrix. Cartilage oligomeric protein may have value as a marker of turnover and degeneration of cartilage, and other noncollagenous proteins, including tenascin and fibronectin, can influence interactions between the chondrocytes and the matrix. The matrix protects the cells from injury due to normal use of the joint, determines the types and concentrations of molecules that reach the tells and helps to maintain the chondrocyte phenotype. Throughout life, the tissue undergoes continual internal remodeling as the cells replace matrix macromolecules lost through degradation. The available evidence indicates that normal matrix turnover depends on the ability of chondrocytes to detect alterations in the macromolecular composition and organization of the matrix, including the presence of degraded molecules, and to respond by synthesizing appropriate types and amounts of new molecules. In addition, the matrix acts as a signal transducer for the cells. Loading of the tissue due to use of the joint creates mechanical, electrical, and physicochemical signals that help to direct the synthetic and degradative activity of chondrocytes. A prolonged severe decrease in the use of the joint leads to alterations in the composition of the matrix and eventually to loss of tissue structure and mechanical properties, whereas use of the joint stimulates the synthetic activity of chondrocytes and possibly the internal tissue remodeling Aging leads to alterations in the composition of the matrix and the activity of the chondrocytes, including the ability of the cells to respond to a variety of stimuli such as growth factors. These alterations may increase the probability of degeneration of the cartilage.

952 citations

01 Jan 2009
TL;DR: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks.
Abstract: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks. The microtissues and tissue spheroids are living materials with certain measurable, evolving and potentially controllable composition, material and biological properties. Closely placed tissue spheroids undergo tissue fusion - a process that represents a fundamental biological and biophysical principle of developmental biology-inspired directed tissue self-assembly. It is possible to engineer small segments of an intraorgan branched vascular tree by using solid and lumenized vascular tissue spheroids. Organ printing could dramatically enhance and transform the field of tissue engineering by enabling large-scale industrial robotic biofabrication of living human organ constructs with "built-in" perfusable intraorgan branched vascular tree. Thus, organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.

942 citations