scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: a review

04 Aug 2021-Environmental Chemistry Letters (Springer International Publishing)-Vol. 19, Iss: 6, pp 1-18
TL;DR: In this article, the authors highlighted some promising catalysts such as mineral acids, mesoporous silica materials, zeolites, metalorganic frameworks, metal oxides and ionic liquids used in biorefining to generate biochemicals.
Abstract: The applications of green chemistry and industrial bioprocessing are becoming more popular to address concerns of pollution, climate change, global warming, circular bioeconomy, sustainable development goals and energy security. Both biological and thermochemical routes can play vital roles in transforming waste lignocellulosic biomass to high-value bioproducts. Lignocellulosic biomass contains essential building blocks that could be tapped to generate biofuels, biochemicals and biomaterials to replace petroleum-derived fuels and chemicals. Besides containing extractives and ash, lignocellulosic feedstocks are made up of cellulose, hemicellulose and lignin typically in the ranges of 35–55 wt%, 20–40 wt% and 10–25 wt%, respectively. Catalytic thermochemical approaches are effective for biomass conversion with a significant yield of various platform chemicals, such as furfural, 5-hydroxymethylfurfural, levulinic acid and other furan or non-furan-based chemicals. These chemicals play a crucial part in the synthesis of different fuel-based materials, which can successfully replace petroleum-based chemicals or fuels. Lignocellulosic biomass and their derived monomeric sugars can be catalytically converted into various platform chemicals using different homogeneous and heterogeneous catalysts. In this review paper, we have highlighted some promising catalysts such as mineral acids, mesoporous silica materials, zeolites, metal–organic frameworks, metal oxides and ionic liquids used in biorefining to generate biochemicals. We have also reviewed a few pieces of notable literature presenting the catalytic conversion of cellulose, hemicellulose, cellobiose, glucose, fructose and xylose into various high-value chemicals.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of bioplastic polymers such as polyhydroxyalkanoate, polylactic acid, poly-3-hydroxybutyrate and polyamide 11 is presented.
Abstract: Non-biodegradable plastics are continually amassing landfills and oceans worldwide while creating severe environmental issues and hazards to animal and human health. Plastic pollution has resulted in the death of millions of seabirds and aquatic animals. The worldwide production of plastics in 2020 has increased by 36% since 2010. This has generated significant interest in bioplastics to supplement global plastic demands. Bioplastics have several advantages over conventional plastics in terms of biodegradability, low carbon footprint, energy efficiency, versatility, unique mechanical and thermal characteristics, and societal acceptance. Bioplastics have huge potential to replace petroleum-based plastics in a wide range of industries from automobiles to biomedical applications. Here we review bioplastic polymers such as polyhydroxyalkanoate, polylactic acid, poly-3-hydroxybutyrate, polyamide 11, and polyhydroxyurethanes; and cellulose-based, starch-based, protein-based and lipid-based biopolymers. We discuss economic benefits, market scenarios, chemistry and applications of bioplastic polymers.

62 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes is presented.

32 citations

Journal ArticleDOI
TL;DR: In this article , a review of recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes is presented.

32 citations

Journal ArticleDOI
01 Sep 2022-Fuel
TL;DR: In this paper , steam gasification of pellets prepared from canola residue was carried out at varying temperatures (650-850 °C) and equivalence ratio (0.2-0.4).

17 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of the chemistry of levulinic acid synthesis from lignocellulosics can be found in this paper, where the authors discuss current and potential technologies for producing ligninic acid from biomass.
Abstract: Biomass represents an abundant and relatively low cost carbon resource that can be utilized to produce platform chemicals such as levulinic acid. Current processing technology limits the cost-effective production of levulinic acid in commercial quantities from biomass. The key to improving the yield and efficiency of levulinic acid production from biomass lies in the ability to optimize and isolate the intermediate products at each step of the reaction pathway and reduce re-polymerization and side reactions. New technologies (including the use of microwave irradiation and ionic liquids) and the development of highly selective catalysts would provide the necessary step change for the optimization of key reactions. A processing environment that allows the use of biphasic systems and/or continuous extraction of products would increase reaction rates, yields and product quality. This review outlines the chemistry of levulinic acid synthesis and discusses current and potential technologies for producing levulinic acid from lignocellulosics. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd

566 citations

Journal ArticleDOI
TL;DR: In this paper, the physicochemical properties of water under subcritical and supercritical conditions and the interactions of water with biomass are discussed in the present paper, and the characteristics of various types of hydrothermal processing products are identified.
Abstract: Hydrothermal processing is an important thermochemical conversion process that is used to convert biomass into valuable products or biofuel. The process is usually performed in water at 250–374 °C under pressures of 4–22 MPa. The biomass is degraded into small components in water. Based on the target products, i.e., bio-oil, bio-gas or bio-carbon, the process conditions (temperature, pressure and time) are chosen. There has been significant effort in evaluating various biomass resources for hydrothermal processing because the process is suitable for any type of biomass including the co-utilization of biomass with waste materials. Additionally, because most biomass resources have high moisture contents, the most efficient way to process them is through hydrothermal processing. To understand hydrothermal biomass processing and the degradation pathway of biomass, it is necessary to understand the properties of water under hydrothermal conditions (i.e., subcritical and supercritical). In this respect, the physicochemical properties of water under subcritical and supercritical conditions and the interactions of water with biomass are discussed in the present paper. This review focuses on the hydrothermal processing of biomass and identifies the characteristics of various types of hydrothermal processing products. Additionally, this review provides an overview of the available biomass, the use of biomass as an energy source and related conversion technologies.

491 citations

Journal ArticleDOI
TL;DR: Recent advances in understanding lignin structure in the plant cell walls and the negative roles of lignIn in the processes of converting biomass to biofuels are reviewed.

423 citations

Journal ArticleDOI
TL;DR: A review of the most recent studies on acid-catalyzed hydrolysis can be found in this paper, where the main byproducts, including levulinic acid (LA) and 5-hydroxymethylfurfural (HMF), are discussed.
Abstract: Catalytic conversion of renewable biomass to “green” chemicals and fuel additives has been extensively investigated in the past few decades. Interests on two top platform intermediates for biofuel production, i.e. levulinic acid (LA) and 5-hydroxymethylfurfural (HMF), have increased significantly. These two chemicals are generally produced from biomass through acid hydrolysis. This review summarizes the discoveries of the most recent studies on acid-catalyzed hydrolysis, including (i) biomass pretreatment, (ii) glucose production from cellulose hydrolysis, (iii) fructose formation from glucose isomerization, (iv) HMF formation from glucose/fructose dehydration and (v) LA production from HMF rehydration. Humins, the main byproducts, are also discussed in the aspect of their influence on the hydrolysis process, structure, formation mechanism, and applications.

361 citations

Journal ArticleDOI
TL;DR: In this critical review, the ordered mesoporous inorganic non-oxide materials are categorized by compositions, includingnon-oxide ceramics, metal chalcogenides, metal nitrides, carbides and fluorides, and systematically summarized on the basis of their synthesis approaches and mechanisms.
Abstract: Ordered mesoporous inorganic non-oxide materials attract increasing interest due to their plenty of unique properties and functionalities and potential applications. Lots of achievements have been made on their synthesis and structural characterization, especially in the last five years. In this critical review, the ordered mesoporous non-oxide materials are categorized by compositions, including non-oxide ceramics, metal chalcogenides, metal nitrides, carbides and fluorides, and systematically summarized on the basis of their synthesis approaches and mechanisms, as well as properties. Two synthesis routes such as hard-templating (nanocasting) and soft-templating (surfactant assembly) routes are demonstrated. The principal issues in the nanocasting synthesis including the template composition and mesostructure, pore surface chemistry, precursor selection, processing and template removal are emphatically described. A great number of successful cases from the soft-templating method are focused on the surfactant liquid-crystal mesophases to synthesize mesostructured metal chalcogenide composites and the inorganic-block-organic copolymer self-assembly to obtain non-oxide ceramics (296 references).

315 citations