scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Catalytic PVDF membrane for continuous reduction and separation of p-nitrophenol and methylene blue in emulsified oil solution

15 Feb 2018-Chemical Engineering Journal (Elsevier)-Vol. 334, pp 579-586
TL;DR: In this paper, a catalytic finger reactor based on PVDF membrane was developed for continuous reduction of p -nitrophenol (4-NP) and methylene blue (MB) in chloroform-in-water emulsion by integration of physical sieving and chemical reaction.
About: This article is published in Chemical Engineering Journal.The article was published on 2018-02-15. It has received 108 citations till now. The article focuses on the topics: Nitrophenol.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the biosorption mechanisms of methylene blue (MB) and Cr(III) onto pomelo peel collected from local fruits by combining experimental analysis with ab initio simulations.
Abstract: In this study, the biosorption mechanisms of methylene blue (MB) and Cr(III) onto pomelo peel collected from our local fruits are investigated by combining experimental analysis with ab initio simulations. Factors that affect the adsorption such as pH, adsorption time, adsorbent dosage and initial adsorbate concentration, are fully considered. Five isotherm models—Langmuir, Freundlich, Sips, Temkin, and Dubinin–Radushkevich—are employed to estimate the capacity of pomelo peel adsorption, whereas four kinetic models—pseudo-first-order, pseudo-second-order, Elovich and intra-diffusion models—are also used to investigate the mechanisms of the uptake of MB and Cr(III) onto the pomelo fruit peel. The maximum biosorption capacities calculated from the Langmuir models for MB and Cr(III) at 303 K are, 218.5 mg g−1 and 11.3 mg g−1, respectively. In particular, by combining, for the first time, the experimental FT-IR spectra with those obtained from ab initio calculations, we are able to demonstrate that the primary adsorption mechanisms of the uptake of MB onto pomelo fruit peel are electrostatic attraction and hydrogen-bond formations, whereas the adsorption mechanisms for Cr(III) are electrostatic attraction and n–d interactions.

106 citations

Journal ArticleDOI
TL;DR: In this article, a robust catalytic membrane with highly active sites for instantaneous and standing mineralization of flowing Pops is presented, which enables in-situ growth and firm enchasing of Prussian blue (PB) micro-crystals in the micro-clusters of Polyvinylidene fluoride (PVDF) membrane, where active sites are fully exposed for oxidant reagent and target contaminants.
Abstract: Catalytic membranes as heterogeneous advanced oxidation microreactors are appealing for persistent organic pollutants (Pops) treatment. Constructing a robust catalytic membrane with highly active sites for instantaneous and standing mineralization of flowing Pops are challenging in its practical application. Herein, we enable in-situ growth and firm enchasing of Prussian blue (PB) micro-crystals in the micro-clusters of Polyvinylidene fluoride (PVDF) membrane, where active sites are fully exposed for oxidant reagent and target contaminants. The designed PB@PVDF catalytic membrane demonstrates exceptional efficiency for instantaneous degradation of recalcitrant organic molecules e.g. bisphenol A, methylene blue, rhodamine B as well as humic acid. The membrane maintains high removal efficiency above 99% for MB with a constant flux of 300 L m−2 h−1 during a long-term (24 h) cross-flow test. Both the enrichment of radials and pollutants in confined tortuous micro-pores and prompt flowing away of degraded products lead to the superior catalytic activity of heterogeneous Fenton reactors.

90 citations

Journal ArticleDOI
01 Mar 2020
TL;DR: This work provides a promising approach to prepare the ultrathin and layered 2D MXene Ti3C2Tx membrane for separation of stable emulsified oil-in-water mixtures separation.
Abstract: Layered Ti3C2Tx MXene is a two-dimensional (2D) metal carbide based material with high adsorption capacity and hydrophilicity, which is beneficial for oil/water separation. Herein, the Ti3C2Tx (T represents O, OH, and/or F) MXene membrane was obtained by depositing Ti3C2Tx MXene 2D nanosheets carbides onto porous polyvinylidene fluoride (PVDF) membranes by vacuum filtration. The as-prepared Ti3C2Tx MXene membrane exhibits excellent underwater superoleophobicity with oil contact angles (OCAs) close to 158° and oil sliding angles (OSAs) lower than 7°. In addition, the layered Ti3C2Tx MXene membrane can separate a series of stable emulsions even emulsified crude oil-in-water mixtures, and displays excellent separation efficiency over 99.4% and high permeation flux of 887 L m−2 h−1 bar−1. Furthermore, the Ti3C2Tx membrane displays superior durability to the corrosive liquids such as acidic, alkaline and salty, and can also effectively remove oil droplets from water in corrosive environment. This work provides a promising approach to prepare the ultrathin and layered 2D MXene Ti3C2Tx membrane for separation of stable emulsified oil-in-water mixtures separation.

89 citations

Journal ArticleDOI
TL;DR: Overall, this study indicated the GO-AL aerogel could be an eco-friendly, cost-effective and recyclable adsorbent for the removal of dyes from water.

84 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the nanocatalytic reduction of leucomethylene blue (MB) is presented, where the authors describe the fundamental properties of the reduction reaction of MB and present the classification of the recently reported nano-catalytic assemblies on the basis of the utilized supporting medium.
Abstract: Abstract Methylene blue (MB) (3,7-bis (dimethylamino)-phenothiazin-5-ium chloride) is a harmful pollutant and has been long been known for its detrimental effects on human health. Over the recent years, many strategies including reduction, oxidation, biological and photochemical degradation have been reported for converting this harmful dye into commercially useful products. Among the aforementioned strategies, the nanocatalytic reduction of MB into its reduced counterpart, i.e. leucomethylene blue, is considered more preferable because it has been reported to have numerous applications in various industrial fields in the academic literature. The reduction of MB is the kinetically unfavorable reaction. Henceforth, various nanocatalytic systems utilizing different kinds of stabilization mediums have reportedly been used for speeding up this particular reaction. This article attempts to not only describe the fundamental properties of the reduction reaction of MB but also present the classification of the recently reported nanocatalytic assemblies on the basis of the utilized supporting medium. Various techniques used for the characterization of nanocatalytic systems reported for the reduction of MB have been summarized in this review. The thermodynamics, kinetics and mechanistic studies of this nanocatalytic reaction have also been narrated here. This critical review has been written comprehensively to abridge the recent research progress in the assemblage of nanocatalytic systems used for the reduction of MB and to propose some new ideas for further development in this area.

74 citations

References
More filters
Journal ArticleDOI
19 Oct 2007-Science
TL;DR: Inspired by the composition of adhesive proteins in mussels, dopamine self-polymerization is used to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics.
Abstract: We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

8,669 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a state-of-the-art review on the development in heterogeneous catalysts including single metal, mixed metal, and nonmetal carbon catalysts for organic contaminants removal, with particular focus on peroxymonosulfate (PMS) activation.
Abstract: Sulfate radical-based advanced oxidation processes (SR-AOPs) employing heterogeneous catalysts to generate sulfate radical (SO4 −) from peroxymonosulfate (PMS) and persulfate (PS) have been extensively employed for organic contaminant removal in water. This article aims to provide a state–of–the–art review on the recent development in heterogeneous catalysts including single metal, mixed metal, and nonmetal carbon catalysts for organic contaminants removal, with particular focus on PMS activation. The hybrid heterogeneous catalyst/PMS systems integrated with other advanced oxidation technologies is also discussed. Several strategies for the identification of principal reactive radicals in SO4 −–oxidation systems are evaluated, namely (i) use of chemical probe or spin trapping agent coupled with analytical tools, and (ii) competitive kinetic approach using selective radical scavengers. The main challenges and mitigation strategies pertinent to the SR-AOPs are identified, which include (i) possible formation of oxyanions and disinfection byproducts, and (ii) dealing with sulfate produced and residual PMS. Potential future applications and research direction of SR-AOPs are proposed. These include (i) novel reactor design for heterogeneous catalytic system based on batch or continuous flow (e.g. completely mixed or plug flow) reactor configuration with catalyst recovery, and (ii) catalytic ceramic membrane incorporating SR-AOPs.

1,802 citations

Journal ArticleDOI
Fu Liu1, N. Awanis Hashim1, Yutie Liu1, M.R. Moghareh Abed1, Kang Li1 
TL;DR: A comprehensive overview of recent progress on the production and modification of polyvinylidene fluoride (PVDF) membranes for liquid-liquid or liquid-solid separation can be found in this article.

1,776 citations

Journal ArticleDOI
TL;DR: A literature review on environmental application of peroxymonosulfate (PMS) in degradation of contaminants to clarify the performance of PMS is carried out in this paper, which describes the PMS usage in remediation of environmental pollutants with focus on the different methods of activation and the effect of main operational parameters on PMS-based processes.

1,650 citations