scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cation–Anion Arrangement Patterns in Self-Assembled Pd2L4 and Pd4L8 Coordination Cages

17 Aug 2017-Accounts of Chemical Research (American Chemical Society)-Vol. 50, Iss: 9, pp 2233-2243
TL;DR: This work showcases selected examples of self-assembled cages whose guest uptake or even overall structural integrity is reversibly switched by light or small molecules with potential application in stimuli responsive materials (e.g., for sequestration of pollutants or stabilization of reactive compounds) up to functional nanosystems and molecular machines.
Abstract: ConspectusCompounds featuring one-dimensional regular arrangements of stacked metal complexes and alternating [cation–anion]∞ sequences have raised considerable interest owing to their peculiar electronic and optical properties as well as guest inclusion capabilities. While traditional ways to realize these structural motifs rely on crystalline compounds, exclusively existing in the solid state, recent progress in the area of metal-mediated supramolecular self-assembly allows for the rational synthesis of structurally well-defined short stretches of stacked metal complexes and cation–anion arrangements. Therefore, metal cations, counteranions, and suitably designed organic bridges are allowed to self-assemble in solution. While the bridges can be designed as cross-linkers to yield extended two- or three-dimensional networks such as layered materials, metal–organic frameworks (MOFs), or porous coordination polymers (PCPs), they can also be tailored to lead to discrete nanoscopic objects. Supramolecular hel...
Citations
More filters
Journal ArticleDOI
TL;DR: This Account will focus on the recent advance on construction of stimuli-responsive functional materials through HSA involving coordination interactions, which suggests that combining coordination and other NCIs in a well-defined and precise manner is a highly efficient strategy to achieve the complex architectures and functional materials.
Abstract: ConspectusSupramolecular self-assembly, which creates the ordered structures as a result of spontaneous organization of building blocks driven by noncovalent interactions (NCIs), is ubiquitous in nature. Recently, it has become increasingly clear that nature often builds up complex structures by employing a hierarchical self-assembly (HSA) strategy, in which the components are brought together in a stepwise process via multiple NCIs. Inspired by the dedicated biological structures in nature, HSA has been widely explored to construct well-defined assemblies with increasing complexity.The employment of direct metal–ligand bonds to drive the formation of discrete metallosupramolecular architectures has proven to be a highly efficient strategy to prepare structurally diverse architectures like two-dimensional (2-D) polygons and three-dimensional (3-D) polyhedra with well-defined shapes, sizes, and geometries. Such well-defined organometallic assemblies provide an ideal platform for designing novel artificial ...

260 citations

Journal ArticleDOI
TL;DR: Using multiplanar, directed spacer units in the polyterpyridine vertices, new 3D-polyhedra were obtained facilitating the assembly of hybrid fractal-dendritic materials.
Abstract: This overview represents a comprehensive summary of the recent developments in the growing field of terpyridine-based, discrete metallosupramolecular architectures. The N-heteroaromatic ligand [2,2′:6′,2′′]terpyridine (tpy) presents a convergent N,N′,N′′-chelating donor set and has the ability to bind diverse metal ions to form stable pseudo-octahedral 〈tpy–M2+–tpy〉 bonds. Use of 〈tpy–M2+–tpy〉 connectivity for the edges and directed organic vertices has opened the door to diverse, dynamic, utilitarian macromolecular materials. New strategies have been employed to synthesize a range of 2D- and 3D-fractals as well as novel macrocyclic constructs by employing new designer strategies, such as: triangle-based frameworks, hexagonal fractal designs, flexible polyterpyridine linkers, and noncovalent interactions for spontaneous quantitative self-assembly. Numerous examples of heteroleptic self-assembly have been described along with the synthesis of heterometallic conjugates using step-wise protocols. Utilizing multiplanar, directed spacer units in the polyterpyridine vertices, new 3D-polyhedra were obtained facilitating the assembly of hybrid fractal-dendritic materials. These constructs are shown to undergo tunable conformational transformations by responding to specific stimuli such as concentration, temperature, and counter ions. The increasing ability to exploit hierarchical self-assembly of complex, higher order supramolecular nanomaterials is discussed.

232 citations

Journal ArticleDOI
TL;DR: This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications, and presents strategies that address key challenges for the preparation of coordination cages that are soluble and stable in water.
Abstract: Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.

230 citations

Journal ArticleDOI
TL;DR: This Account summarizes the prevailing strategies used in recent years in the preparation of SCC-based HASs and illustrates how the combination of dynamic metal-ligand coordination with other interactions was used to obtain hierarchical systems with interesting properties.
Abstract: ConspectusHierarchical self-assembly (HAS) is a multilevel organization process that first assembles elementary molecular units into ordered secondary structures via noncovalent interactions, which further act as the building blocks to form more complex multifunctional superstructures at the next level(s). The HAS strategy has been used as a versatile method for the preparation of soft-matter nanoarchitectures of defined size and morphologies, tunable luminescence, and biological importance. However, such preparation can be greatly simplified if well-defined dynamic structures are employed as the cores that upon linking form the desired nanoarchitectures. Discrete supramolecular coordination complexes (SCCs) with well-defined shapes, sizes, and internal cavities have been widely employed to construct hierarchical systems with functional diversity. This Account summarizes the prevailing strategies used in recent years in the preparation of SCC-based HASs and illustrates how the combination of dynamic metal...

227 citations

Journal ArticleDOI
TL;DR: The recent results related to platinum-based coordination-driven self-assembly (CDSA) are reviewed, and the text is organized to emphasizes both the synthesis of new metallacycles and metallacages and their various applications.
Abstract: Coordination-driven suprastructures have attracted much interest due to their unique properties. Among these structures, platinum-based architectures have been broadly studied due to their facile preparation. The resultant two- or three-dimensional (2D or 3D) systems have many advantages over their precursors, such as improved emission tuning, sensitivity as sensors, and capture and release of guests, and they have been applied in biomedical diagnosis as well as in catalysis. Herein, we review the recent results related to platinum-based coordination-driven self-assembly (CDSA), and the text is organized to emphasizes both the synthesis of new metallacycles and metallacages and their various applications.

220 citations

References
More filters
Journal ArticleDOI
TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Abstract: The chemistry of the coordination polymers has in recent years advanced extensively, affording various architectures, which are constructed from a variety of molecular building blocks with different interactions between them. The next challenge is the chemical and physical functionalization of these architectures, through the porous properties of the frameworks. This review concentrates on three aspects of coordination polymers: 1). the use of crystal engineering to construct porous frameworks from connectors and linkers ("nanospace engineering"), 2). characterizing and cataloging the porous properties by functions for storage, exchange, separation, etc., and 3). the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli. Our aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers.

9,661 citations

Journal ArticleDOI
TL;DR: In the early 1960s, the discovery of crown ethers and spherands by Pedersen, Lehn, and Cram3 led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, hydrophilic and hydrophobic interactions to achieve these highly complex and often symmetrical architectures as mentioned in this paper.
Abstract: Fascination with supramolecular chemistry over the last few decades has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nanoscopic dimensions Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries both inside and between the fields of chemistry, physics, and biology This chemistry is of continuing interest for synthetic chemists; partly because of the fascinating physical and chemical properties and the complex and varied aesthetically pleasing structures that supramolecules possess For scientists seeking to design novel molecular materials exhibiting unusual sensing, magnetic, optical, and catalytic properties, and for researchers investigating the structure and function of biomolecules, supramolecular chemistry provides limitless possibilities Thus, it transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field In the early 1960s, the discovery of ‘crown ethers’, ‘cryptands’ and ‘spherands’ by Pedersen,1 Lehn,2 and Cram3 respectively, led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, etc Such ‘programmed’ molecules can thus be self-assembled by utilizing these interactions in a definite algorithm to form large supramolecules that have different physicochemical properties than those of the precursor building blocks Typical systems are designed such that the self-assembly process is kinetically reversible; the individual building blocks gradually funnel towards an ensemble that represents the thermodynamic minimum of the system via numerous association and dissociation steps By tuning various reaction parameters, the reaction equilibrium can be shifted towards the desired product As such, self-assembly has a distinct advantage over traditional, stepwise synthetic approaches when accessing large molecules It is well known that nature has the ability to assemble relatively simple molecular precursors into extremely complex biomolecules, which are vital for life processes Nature’s building blocks possess specific functionalities in configurations that allow them to interact with one another in a deliberate manner Protein folding, nucleic acid assembly and tertiary structure, phospholipid membranes, ribosomes, microtubules, etc are but a selective, representative example of self-assembly in nature that is of critical importance for living organisms Nature makes use of a variety of weak, non-covalent interactions such as hydrogen–bonding, charge–charge, donor–acceptor, π-π, van der Waals, hydrophilic and hydrophobic, etc interactions to achieve these highly complex and often symmetrical architectures In fact, the existence of life is heavily dependent on these phenomena The aforementioned structures provide inspiration for chemists seeking to exploit the ‘weak interactions’ described above to make scaffolds rivaling the complexity of natural systems The breadth of supramolecular chemistry has progressively increased with the synthesis of numerous unique supramolecules each year Based on the interactions used in the assembly process, supramolecular chemistry can be broadly classified in to three main branches: i) those that utilize H-bonding motifs in the supramolecular architectures, ii) processes that primarily use other non-covalent interactions such as ion-ion, ion-dipole, π–π stacking, cation-π, van der Waals and hydrophobic interactions, and iii) those that employ strong and directional metal-ligand bonds for the assembly process However, as the scale and degree of complexity of desired molecules increases, the assembly of small molecular units into large, discrete supramolecules becomes an increasingly daunting task This has been due in large part to the inability to completely control the directionality of the weak forces employed in the first two classifications above Coordination-driven self-assembly, which defines the third approach, affords a greater control over the rational design of 2D and 3D architectures by capitalizing on the predictable nature of the metal-ligand coordination sphere and ligand lability to encode directionality Thus, this third strategy represents an alternative route to better execute the “bottom-up” synthetic strategy for designing molecules of desired dimensions, ranging from a few cubic angstroms to over a cubic nanometer For instance, a wide array of 2D systems: rhomboids, squares, rectangles, triangles, etc, and 3D systems: trigonal pyramids, trigonal prisms, cubes, cuboctahedra, double squares, adamantanoids, dodecahedra and a variety of other cages have been reported As in nature, inherent preferences for particular geometries and binding motifs are ‘encoded’ in certain molecules depending on the metals and functional groups present; these moieties help to control the way in which the building blocks assemble into well-defined, discrete supramolecules4 Since the early pioneering work by Lehn5 and Sauvage6 on the feasibility and usefulness of coordination-driven self-assembly in the formation of infinite helicates, grids, ladders, racks, knots, rings, catenanes, rotaxanes and related species,7 several groups - Stang,8 Raymond,9 Fujita,10 Mirkin,11 Cotton12 and others13,14 have independently developed and exploited novel coordination-based paradigms for the self-assembly of discrete metallacycles and metallacages with well-defined shapes and sizes In the last decade, the concepts and perspectives of coordination-driven self-assembly have been delineated and summarized in several insightful reviews covering various aspects of coordinationdriven self-assembly15 In the last decade, the use of this synthetic strategy has led to metallacages dubbed as “molecular flasks” by Fujita,16 and Raymond and Bergman,17 which due to their ability to encapsulate guest molecules, allowed for the observation of unique chemical phenomena and unusual reactions which cannot be achieved in the conventional gas, liquid or solid phases Furthermore, these assemblies found applications in supramolecular catalysis18,19 and as nanomaterials as developed by Hupp20 and others21,22 This review focuses on the journey of early coordination-driven self-assembly paradigms to more complex and discrete 2D and 3D supramolecular ensembles over the last decade We begin with a discussion of various approaches that have been developed by different groups to assemble finite supramolecular architectures The subsequent sections contain detailed discussions on the synthesis of discrete 2D and 3D systems, their functionalizations and applications

2,388 citations

Journal ArticleDOI
TL;DR: The last 15 years of work with the Pd(II)-cornered unit is summarized in this Account, from the spontaneous formation of a Pd4 square metal complex to a family of architectures such as cages, bowls, boxes, tubes, catenanes, and spheres.
Abstract: The [enPd(II)]2+ (en = ethylenediamine) unit has emerged as a versatile building block in molecular self-assembly. In particular, the 90° coordination angle of the metal has been judiciously used in the design of new discrete two- and three-dimensional structures. Our last 15 years of work with the Pd(II)-cornered unit is summarized in this Account, from the spontaneous formation of a Pd4 square metal complex to a family of architectures such as cages, bowls, boxes, tubes, catenanes, and spheres.

1,797 citations

Journal ArticleDOI
TL;DR: Advances in flexible and functional metal-organic frameworks (MOFs), also called soft porous crystals, are reviewed by covering the literature of the five years period 2009-2013 with reference to the early pertinent work since the late 1990s.
Abstract: Advances in flexible and functional metal–organic frameworks (MOFs), also called soft porous crystals, are reviewed by covering the literature of the five years period 2009–2013 with reference to the early pertinent work since the late 1990s. Flexible MOFs combine the crystalline order of the underlying coordination network with cooperative structural transformability. These materials can respond to physical and chemical stimuli of various kinds in a tunable fashion by molecular design, which does not exist for other known solid-state materials. Among the fascinating properties are so-called breathing and swelling phenomena as a function of host–guest interactions. Phase transitions are triggered by guest adsorption/desorption, photochemical, thermal, and mechanical stimuli. Other important flexible properties of MOFs, such as linker rotation and sub-net sliding, which are not necessarily accompanied by crystallographic phase transitions, are briefly mentioned as well. Emphasis is given on reviewing the recent progress in application of in situ characterization techniques and the results of theoretical approaches to characterize and understand the breathing mechanisms and phase transitions. The flexible MOF systems, which are discussed, are categorized by the type of metal-nodes involved and how their coordination chemistry with the linker molecules controls the framework dynamics. Aspects of tailoring the flexible and responsive properties by the mixed component solid-solution concept are included, and as well examples of possible applications of flexible metal–organic frameworks for separation, catalysis, sensing, and biomedicine.

1,560 citations