scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources

01 Dec 1988-Review of Scientific Instruments (American Institute of Physics)-Vol. 59, Iss: 12, pp 2544-2551
TL;DR: In this paper, the authors have developed a technique which allows optical absorption measurements to be made using a pulsed light source and offers a sensitivity significantly greater than that attained using stabilized continuous light sources.
Abstract: We have developed a technique which allows optical absorption measurements to be made using a pulsed light source and offers a sensitivity significantly greater than that attained using stabilized continuous light sources. The technique is based upon the measurement of the rate of absorption rather than the magnitude of absorption of a light pulse confined within a closed optical cavity. The decay of the light intensity within the cavity is a simple exponential with loss components due to mirror loss, broadband scatter (Rayleigh, Mie), and molecular absorption. Narrowband absorption spectra are recorded by scanning the output of a pulsed laser (which is injected into the optical cavity) through an absorption resonance. We have demonstrated the sensitivity of this technique by measuring several bands in the very weak forbidden b1Σg−X3Σg transition in gaseous molecular oxygen. Absorption signals of less than 1 part in 106 can be detected.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the basis for each technique, recent developments in methods and performance limitations, and present a performance comparison of different techniques, taking data reported over the preceding decade, and draw conclusions from this benchmarking.
Abstract: The detection and measurement of gas concentrations using the characteristic optical absorption of the gas species is important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change. This study reviews the field, covering several individual gas detection techniques including non-dispersive infrared, spectrophotometry, tunable diode laser spectroscopy and photoacoustic spectroscopy. We present the basis for each technique, recent developments in methods and performance limitations. The technology available to support this field, in terms of key components such as light sources and gas cells, has advanced rapidly in recent years and we discuss these new developments. Finally, we present a performance comparison of different techniques, taking data reported over the preceding decade, and draw conclusions from this benchmarking.

1,293 citations


Cites background from "Cavity ring‐down optical spectromet..."

  • ...O’Keefe and Deacon discussed the important characteristics of pulsed CRDS [267] ....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present diagnostic techniques based on optical emission spectroscopy and cavity ring-down Spectroscopy for atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium.
Abstract: Atmospheric pressure air plasmas are often thought to be in local thermodynamic equilibrium owing to fast interspecies collisional exchange at high pressure. This assumption cannot be relied upon, particularly with respect to optical diagnostics. Velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. This paper reviews diagnostic techniques based on optical emission spectroscopy and cavity ring-down spectroscopy that we have found useful for making temperature and concentration measurements in atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium.

915 citations


Cites background from "Cavity ring‐down optical spectromet..."

  • ...In CRDS, light from a pulsed or continuous-wave laser source is injected into a high-finesse optical cavity (the ringdown cavity) formed by two or more highly reflective mirrors [23, 24]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes.
Abstract: We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further.

715 citations


Cites methods from "Cavity ring‐down optical spectromet..."

  • ...In addition, several other methods achieve fast detection, including the previously discussed microlasers used for single nanoparticle detection [219,220] as well as cavity ring-down optical spectroscopy [223]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that a commercial single-frequency cavity ring down spectroscopy (CRDS) can also be conveniently employed, allowing to gain in spectral resolution, signal intensity and data acquisition rate.

512 citations

Journal ArticleDOI
TL;DR: In the short space of 15 years since their first demonstration, quantum cascade lasers have become the most useful sources of tunable mid-infrared laser radiation as discussed by the authors, and the potential application of quantum cascade laser in other areas of chemical physics such as research on helium droplets, in population pumping and in matrix isolation infrared photochemistry.

510 citations

References
More filters
Journal ArticleDOI
John U. White1
TL;DR: In this article, an absorption cell is described, in which the light traverses a small volume a large and arbitrarily variable number of times, and the angular aperture of the mirrors is not occulted either on or off the optical axis, and can be used for observing spectra that are very weak, or that belong to high boiling point compounds or to compounds obtainable only in very low concentrations.
Abstract: THE measurement of the vapor phase spectra T of compounds having high boiling points presents an experimental problem that may be solved either by heating the absorption cells or by making them very long. In the infra-red region radiation from the hot gases in heated cells decreases the accuracy of absorption measurements. If only a small amount of sample is available, the only possibility is to use an optical system in which the radiation goes back and forth through the same volume a large number of times. Several designs for such systems have been published recently1' 2 but none of them permits the use of large angular apertures at points off the optic axis. In this paper an absorption cell is described in which the light traverses a small volume a large and arbitrarily variable number of times, and in which the angular aperture of the mirrors is not occulted either on or off the optical axis. The design gives very high light transmission and can be used for observing spectra that are very weak, or that belong to high boiling point compounds or to compounds obtainable only in very low concentrations. It can be used for any liquids or gases that do not injure the mirror surfaces, with which they are directly in contact. The essential parts of the equipment are three spherical, concave mirrors that all have the same radius of curvature. These are set up as shown in Fig. 1 with two mirrors A and A' close together at one end of the absorption cell, and the third mirror B at the other end. The centers of curvature of A and A' are on the front surface of B, and the center of curvature of B is halfway between A and A'. This arrangement establishes a system of conjugate foci on the reflecting surfaces of the mirrors, by which all the light leaving any point on A is brought to a focus by B at the corresponding point on A', and all the light leaving this point on A' is focused back again to the

1,211 citations

Journal ArticleDOI
TL;DR: In this article, a critical review and compilation of the observed and predicted spectroscopic data on O2 and its ions O2−, O2+ and O22+ is presented.
Abstract: This is a critical review and compilation of the observed and predicted spectroscopic data on O2 and its ions O2−, O2+ and O22+ The ultraviolet, visible, infrared, Raman, microwave, and electron paramagnetic resonance spectra are included. Each electronic band system is discussed in detail, and tables of band origins and heads are given. The microwave and EPR data are also tabulated. Special subjects such as the dissociation energy of O2, perturbations, and predissociations are discussed. Potential energy curves are given, as well as f‐values, Franck‐Condon integrals, and other intensity factors. A summary table lists the molecular constants for all known electronic states of O2 and O2+ Electronic structure and theoretical calculations are also discussed.

875 citations

Journal ArticleDOI
TL;DR: In this paper, a long optical path has been folded between two 7.5 cm diam spherical or aspherical mirrors to provide an output beam which can be well separated from previous reflections with 1000 or more passes between the mirrors.
Abstract: A long optical path has been folded between two 7.5-cm diam spherical or aspherical mirrors to provide an output beam which can be well separated from previous reflections with 1000 or more passes between the mirrors. The 3000-m path provides 10 μsec of delay. This system can be used as a dispersionless optical delay line for use in filtering or storage of information modulated onto the light beam. The pattern of beams between the two mirrors is obtained in one of two ways. A small perturbing mirror may be inserted to give a series of offset ellipses, or one or both of the mirrors can be made astigmatic to give a Lissajous pattern of spots on each mirror. The output beam can be separated from others by discriminating in both angle and position. The diffraction losses of the system are much lower than those for an open beam because of the periodic focusing of the spherical mirrors. The extreme dependence of the loss of the delay line upon the absorption and scattering loss of the mirrors makes the system dependent upon very low loss mirrors and also makes the system a suitable method for measuring mirror loss. Block diagrams are shown for some possible filtering and storage applications.

542 citations