scispace - formally typeset
Search or ask a question
Posted ContentDOI

CD147 antibody specifically and effectively inhibits infection and cytokine storm of SARS-CoV-2 variants

TL;DR: Wang et al. as discussed by the authors demonstrated that CD147 antibody effectively inhibits infection and cytokine storm caused by SARS-CoV-2 variants, and found the elevated level of cyclophilin A (CyPA) in plasma of severe/critical cases.
Abstract: SARS-CoV-2 and its variants are raging worldwide. Unfortunately, the global vaccination is not efficient enough to attain a vaccine-based herd-immunity and yet no special and effective drug is developed to contain the spread of the disease. Previously we have identified CD147 as a novel receptor for SARS-CoV-2 infection. Here, we demonstrated that CD147 antibody effectively inhibits infection and cytokine storm caused by SARS-CoV-2 variants. In CD147KO VeroE6 cells, infections of SARS-CoV-2, its variants (B.1.1.7, B.1.351) and pseudovirus mutants (B.1.1.7, B.1.351, B.1.525, B.1.526 (S477N), B.1.526 (E484K), P.1, P.2, B.1.617.1, B.1.617.2) were decreased. Meanwhile, CD147 antibody effectively blocked the entry of variants and pseudomutants in VeroE6 cells, and inhibited the expression of cytokines. A model of SARS-CoV-2-infected hCD147 transgenic mice was constructed, which recapitulated the features of exudative diffuse alveolar damage and dynamic immune responses of COVID-19. CD147 antibody could effectively clear the virus and alveolar exudation, resolving the pneumonia. We found the elevated level of cyclophilin A (CyPA) in plasma of severe/critical cases, and identified CyPA as the most important proinflammatory intermediate causing cytokine storm. Mechanistically, spike protein of SARS-CoV-2 bound to CD147 and initiated the JAK-STAT pathway, which induced expression of CyPA. CyPA reciprocally bound to CD147, triggered MAPK pathway and consequently mediated the expression of cytokine and chemokine. In conclusion, CD147 is a critical target for SARS-CoV-2 variants and CD147 antibody is a promising drug to control the new wave of COVID-19 epidemic.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors provided a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender related genes, disease related genes and also host epigenetic could influence the severity of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak.

6 citations

Posted ContentDOI
20 Jul 2021-bioRxiv
TL;DR: In this article, the effects of the S protein on primary human cardiac pericytes (PCs) signalling and function were investigated, for the first time, that cardiac PCs are not permissive to SARS-CoV-2 infection in vitro, whilst a recombinant S protein alone elicits functional alterations in PCs.
Abstract: Severe coronavirus disease 2019 (COVID-19) manifests as a life-threatening microvascular syndrome. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the Spike (S) protein to engage with its receptors and infect host cells. To date, it is still not known whether heart vascular pericytes (PCs) are infected by SARS-CoV-2, and if the S protein alone provokes PC dysfunction. Here, we aimed to investigate the effects of the S protein on primary human cardiac PC signalling and function. Results show, for the first time, that cardiac PCs are not permissive to SARS-CoV-2 infection in vitro, whilst a recombinant S protein alone elicits functional alterations in PCs. This was documented as: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors responsible for EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation and rescued PC function in the presence of the S protein. In conclusion, our findings suggest that circulating S protein prompts vascular PC dysfunction, potentially contributing to establishing microvascular injury in organs distant from the site of infection. This mechanism may have clinical and therapeutic implications. Clinical perspective Severe COVID-19 manifests as a microvascular syndrome, but whether SARS-CoV-2 infects and damages heart vascular pericytes (PCs) remains unknown. We provide evidence that cardiac PCs are not infected by SARS-CoV-2. Importantly, we show that the recombinant S protein alone elicits cellular signalling through the CD147 receptor in cardiac PCs, thereby inducing cell dysfunction and microvascular disruption in vitro. This study suggests that soluble S protein can potentially propagate damage to organs distant from sites of infection, promoting microvascular injury. Blocking the CD147 receptor in patients may help protect the vasculature not only from infection, but also from the collateral damage caused by the S protein.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness, and patients often presented without fever, and many did not have abnormal radiologic findings.
Abstract: Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of...

22,622 citations

Journal ArticleDOI
06 Dec 2002-Science
TL;DR: Multicellular organisms have three well-characterized subfamilies of mitogen-activated protein kinases (MAPKs) that control a vast array of physiological processes, and inhibitors of these enzymes are being explored as anticancer agents.
Abstract: Multicellular organisms have three well-characterized subfamilies of mitogen-activated protein kinases (MAPKs) that control a vast array of physiological processes. These enzymes are regulated by a characteristic phosphorelay system in which a series of three protein kinases phosphorylate and activate one another. The extracellular signal-regulated kinases (ERKs) function in the control of cell division, and inhibitors of these enzymes are being explored as anticancer agents. The c-Jun amino-terminal kinases (JNKs) are critical regulators of transcription, and JNK inhibitors may be effective in control of rheumatoid arthritis. The p38 MAPKs are activated by inflammatory cytokines and environmental stresses and may contribute to diseases like asthma and autoimmunity.

3,999 citations

Journal ArticleDOI
13 Jul 2020-Science
TL;DR: The results of this trio of studies suggest that the location, timing, and duration of IFN exposure are critical parameters underlying the success or failure of therapeutics for viral respiratory infections.
Abstract: Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression suggesting diverse host immune responses. We performed an integrated immune analysis on a cohort of 50 COVID-19 patients with various disease severity. A unique phenotype was observed in severe and critical patients, consisting of a highly impaired interferon (IFN) type I response (characterized by no IFN-β and low IFN-α production and activity), associated with a persistent blood viral load and an exacerbated inflammatory response. Inflammation was partially driven by the transcriptional factor NF-κB and characterized by increased tumor necrosis factor (TNF)-α and interleukin (IL)-6 production and signaling. These data suggest that type-I IFN deficiency in the blood could be a hallmark of severe COVID-19 and provide a rationale for combined therapeutic approaches.

2,171 citations

Journal ArticleDOI
07 May 2020-Nature
TL;DR: This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19. Infection with SARS-CoV-2 causes interstitial pneumonia and viral replication in the lungs of transgenic mice that express a human version of ACE2, confirming the pathogenicity of the virus in this model.

919 citations

Journal ArticleDOI
04 Sep 2020-Science
TL;DR: In the peripheral blood mononuclear cells of COVID-19 patients, the authors observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells.
Abstract: Coronavirus disease 2019 (COVID-19) represents a global crisis, yet major knowledge gaps remain about human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta, Georgia, United States. In the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, we observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells. By contrast, we detected enhanced plasma levels of inflammatory mediators-including EN-RAGE, TNFSF14, and oncostatin M-which correlated with disease severity and increased bacterial products in plasma. Single-cell transcriptomics revealed a lack of type I IFNs, reduced HLA-DR in the myeloid cells of patients with severe COVID-19, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics and transient, low IFN-α levels in plasma during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.

860 citations

Related Papers (5)