scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cellular automata as models of complexity

01 Oct 1984-Nature (Nature Publishing Group)-Vol. 311, Iss: 5985, pp 419-424
TL;DR: Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns that can be investigated through mathematical models termed ‘cellular automata’, which consist of many identical components, each simple.
Abstract: Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of such complexity can be investigated through mathematical models termed ‘cellular automata’. Cellular automata consist of many identical components, each simple., but together capable of complex behaviour. They are analysed both as discrete dynamical systems, and as information-processing systems. Here some of their universal features are discussed, and some general principles are suggested.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of predictive habitat distribution modeling is presented, which shows that a wide array of models has been developed to cover aspects as diverse as biogeography, conservation biology, climate change research, and habitat or species management.

6,748 citations

Journal ArticleDOI
01 Oct 1992-Nature
TL;DR: In this article, the authors explore the consequences of placing players in a two-dimensional spatial array: in each round, every individual 'plays the game' with the immediate neighbours; after this, each site is occupied either by its original owner or by one of the neighbours, depending on who scores the highest total in that round; and so to the next round of the game.
Abstract: MUCH attention has been given to the Prisoners' Dilemma as a metaphor for the problems surrounding the evolution of coopera-tive behaviour1–6. This work has dealt with the relative merits of various strategies (such as tit-for-tat) when players who recognize each other meet repeatedly, and more recently with ensembles of strategies and with the effects of occasional errors. Here we neglect all strategical niceties or memories of past encounters, considering only two simple kinds of players: those who always cooperate and those who always defect. We explore the consequences of placing these players in a two-dimensional spatial array: in each round, every individual 'plays the game' with the immediate neighbours; after this, each site is occupied either by its original owner or by one of the neighbours, depending on who scores the highest total in that round; and so to the next round of the game. This simple, and purely deterministic, spatial version of the Prisoners' Dilemma, with no memories among players and no strategical elaboration, can generate chaotically changing spatial patterns, in which cooperators and defectors both persist indefinitely (in fluctuating proportions about predictable long-term averages). If the starting configurations are sufficiently symmetrical, these ever-changing sequences of spatial patterns—dynamic fractals—can be extraordinarily beautiful, and have interesting mathematical properties. There are potential implications for the dynamics of a wide variety of spatially extended systems in physics and biology.

3,822 citations

Journal ArticleDOI
TL;DR: This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic, including microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models.
Abstract: Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

3,117 citations

Journal ArticleDOI
TL;DR: A model to describe the neural dynamics responsible for odor recognition and discrimination is developed and it is hypothesized that chaotic behavior serves as the essential ground state for the neural perceptual apparatus and a mechanism for acquiring new forms of patterned activity corresponding to new learned odors is proposed.
Abstract: Recent “connectionist” models provide a new explanatory alternative to the digital computer as a model for brain function. Evidence from our EEG research on the olfactory bulb suggests that the brain may indeed use computational mechanisms like those found in connectionist models. In the present paper we discuss our data and develop a model to describe the neural dynamics responsible for odor recognition and discrimination. The results indicate the existence of sensory- and motor-specific information in the spatial dimension of EEG activity and call for new physiological metaphors and techniques of analysis. Special emphasis is placed in our model on chaotic neural activity. We hypothesize that chaotic behavior serves as the essential ground state for the neural perceptual apparatus, and we propose a mechanism for acquiring new forms of patterned activity corresponding to new learned odors. Finally, some of the implications of our neural model for behavioral theories are briefly discussed. Our research, in concert with the connectionist work, encourages a reevaluation of explanatory models that are based only on the digital computer metaphor.

1,797 citations

References
More filters
Book
01 Jan 1982
TL;DR: This book is a blend of erudition, popularization, and exposition, and the illustrations include many superb examples of computer graphics that are works of art in their own right.
Abstract: "...a blend of erudition (fascinating and sometimes obscure historical minutiae abound), popularization (mathematical rigor is relegated to appendices) and exposition (the reader need have little knowledge of the fields involved) ...and the illustrations include many superb examples of computer graphics that are works of art in their own right." Nature

24,199 citations

Book
01 Jan 1979
TL;DR: This book is a rigorous exposition of formal languages and models of computation, with an introduction to computational complexity, appropriate for upper-level computer science undergraduates who are comfortable with mathematical arguments.
Abstract: This book is a rigorous exposition of formal languages and models of computation, with an introduction to computational complexity. The authors present the theory in a concise and straightforward manner, with an eye out for the practical applications. Exercises at the end of each chapter, including some that have been solved, help readers confirm and enhance their understanding of the material. This book is appropriate for upper-level computer science undergraduates who are comfortable with mathematical arguments.

13,779 citations


Additional excerpts

  • ...[15]), or parallel-processing computers of simple construction....

    [...]

Book
01 Aug 1983
TL;DR: In this article, the authors introduce differential equations and dynamical systems, including hyperbolic sets, Sympolic Dynamics, and Strange Attractors, and global bifurcations.
Abstract: Contents: Introduction: Differential Equations and Dynamical Systems.- An Introduction to Chaos: Four Examples.- Local Bifurcations.- Averaging and Perturbation from a Geometric Viewpoint.- Hyperbolic Sets, Sympolic Dynamics, and Strange Attractors.- Global Bifurcations.- Local Codimension Two Bifurcations of Flows.- Appendix: Suggestions for Further Reading. Postscript Added at Second Printing. Glossary. References. Index.

12,669 citations


"Cellular automata as models of comp..." refers background in this paper

  • ...[14]), or discrete idealizations of partial differential equations....

    [...]

01 Jan 2015
TL;DR: In this paper, the authors introduce differential equations and dynamical systems, including hyperbolic sets, Sympolic Dynamics, and Strange Attractors, and global bifurcations.
Abstract: Contents: Introduction: Differential Equations and Dynamical Systems.- An Introduction to Chaos: Four Examples.- Local Bifurcations.- Averaging and Perturbation from a Geometric Viewpoint.- Hyperbolic Sets, Sympolic Dynamics, and Strange Attractors.- Global Bifurcations.- Local Codimension Two Bifurcations of Flows.- Appendix: Suggestions for Further Reading. Postscript Added at Second Printing. Glossary. References. Index.

12,485 citations

Journal ArticleDOI
TL;DR: Analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors.
Abstract: Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of "elementary" cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions \ensuremath{\simeq} 1.59 or \ensuremath{\simeq} 1.69. With "random" initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed.

2,860 citations