scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cellular neural networks: theory

01 Oct 1988-IEEE Transactions on Circuits and Systems (IEEE)-Vol. 35, Iss: 10, pp 1257-1272
TL;DR: In this article, a class of information processing systems called cellular neural networks (CNNs) are proposed, which consist of a massive aggregate of regularly spaced circuit clones, called cells, which communicate with each other directly through their nearest neighbors.
Abstract: A novel class of information-processing systems called cellular neural networks is proposed. Like neural networks, they are large-scale nonlinear analog circuits that process signals in real time. Like cellular automata, they consist of a massive aggregate of regularly spaced circuit clones, called cells, which communicate with each other directly only through their nearest neighbors. Each cell is made of a linear capacitor, a nonlinear voltage-controlled current source, and a few resistive linear circuit elements. Cellular neural networks share the best features of both worlds: their continuous-time feature allows real-time signal processing, and their local interconnection feature makes them particularly adapted for VLSI implementation. Cellular neural networks are uniquely suited for high-speed parallel signal processing. >
Citations
More filters
Journal ArticleDOI
TL;DR: A new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains, and implements a function tau(G,n) isin IRm that maps a graph G and one of its nodes n into an m-dimensional Euclidean space.
Abstract: Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs. In this paper, we propose a new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function tau(G,n) isin IRm that maps a graph G and one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm is also considered. Some experimental results are shown to validate the proposed learning algorithm, and to demonstrate its generalization capabilities.

5,701 citations

Journal ArticleDOI
TL;DR: Examples of cellular neural networks which can be designed to recognize the key features of Chinese characters are presented and their applications to such areas as image processing and pattern recognition are demonstrated.
Abstract: The theory of a novel class of information-processing systems, called cellular neural networks, which are capable of high-speed parallel signal processing, was presented in a previous paper (see ibid., vol.35, no.10, p.1257-72, 1988). A dynamic route approach for analyzing the local dynamics of this class of neural circuits is used to steer the system trajectories into various stable equilibrium configurations which map onto binary patterns to be recognized. Some applications of cellular neural networks to such areas as image processing and pattern recognition are demonstrated, albeit with only a crude circuit. In particular, examples of cellular neural networks which can be designed to recognize the key features of Chinese characters are presented. >

2,332 citations

Journal ArticleDOI
TL;DR: A Machine Learning practitioner seeking guidance for implementing the new augmented LSTM model in software for experimentation and research will find the insights and derivations in this treatise valuable as well.

1,795 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the promise of artificial neural networks in the realm of modelling, identification and control of nonlinear systems and explore the links between the fields of control science and neural networks.

1,721 citations

Journal ArticleDOI
01 Jan 2018
TL;DR: The state of the art in memristor-based electronics is evaluated and the future development of such devices in on-chip memory, biologically inspired computing and general-purpose in-memory computing is explored.
Abstract: A memristor is a resistive device with an inherent memory. The theoretical concept of a memristor was connected to physically measured devices in 2008 and since then there has been rapid progress in the development of such devices, leading to a series of recent demonstrations of memristor-based neuromorphic hardware systems. Here, we evaluate the state of the art in memristor-based electronics and explore where the future of the field lies. We highlight three areas of potential technological impact: on-chip memory and storage, biologically inspired computing and general-purpose in-memory computing. We analyse the challenges, and possible solutions, associated with scaling the systems up for practical applications, and consider the benefits of scaling the devices down in terms of geometry and also in terms of obtaining fundamental control of the atomic-level dynamics. Finally, we discuss the ways we believe biology will continue to provide guiding principles for device innovation and system optimization in the field. This Perspective evaluates the state of the art in memristor-based electronics and explores the future development of such devices in on-chip memory, biologically inspired computing and general-purpose in-memory computing.

1,231 citations

References
More filters
Journal ArticleDOI
TL;DR: A model of a system having a large number of simple equivalent components, based on aspects of neurobiology but readily adapted to integrated circuits, produces a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size.
Abstract: Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.

16,652 citations

Book
01 Jan 1984
TL;DR: The purpose and nature of Biological Memory, as well as some of the aspects of Memory Aspects, are explained.
Abstract: 1. Various Aspects of Memory.- 1.1 On the Purpose and Nature of Biological Memory.- 1.1.1 Some Fundamental Concepts.- 1.1.2 The Classical Laws of Association.- 1.1.3 On Different Levels of Modelling.- 1.2 Questions Concerning the Fundamental Mechanisms of Memory.- 1.2.1 Where Do the Signals Relating to Memory Act Upon?.- 1.2.2 What Kind of Encoding is Used for Neural Signals?.- 1.2.3 What are the Variable Memory Elements?.- 1.2.4 How are Neural Signals Addressed in Memory?.- 1.3 Elementary Operations Implemented by Associative Memory.- 1.3.1 Associative Recall.- 1.3.2 Production of Sequences from the Associative Memory.- 1.3.3 On the Meaning of Background and Context.- 1.4 More Abstract Aspects of Memory.- 1.4.1 The Problem of Infinite-State Memory.- 1.4.2 Invariant Representations.- 1.4.3 Symbolic Representations.- 1.4.4 Virtual Images.- 1.4.5 The Logic of Stored Knowledge.- 2. Pattern Mathematics.- 2.1 Mathematical Notations and Methods.- 2.1.1 Vector Space Concepts.- 2.1.2 Matrix Notations.- 2.1.3 Further Properties of Matrices.- 2.1.4 Matrix Equations.- 2.1.5 Projection Operators.- 2.1.6 On Matrix Differential Calculus.- 2.2 Distance Measures for Patterns.- 2.2.1 Measures of Similarity and Distance in Vector Spaces.- 2.2.2 Measures of Similarity and Distance Between Symbol Strings.- 2.2.3 More Accurate Distance Measures for Text.- 3. Classical Learning Systems.- 3.1 The Adaptive Linear Element (Adaline).- 3.1.1 Description of Adaptation by the Stochastic Approximation.- 3.2 The Perceptron.- 3.3 The Learning Matrix.- 3.4 Physical Realization of Adaptive Weights.- 3.4.1 Perceptron and Adaline.- 3.4.2 Classical Conditioning.- 3.4.3 Conjunction Learning Switches.- 3.4.4 Digital Representation of Adaptive Circuits.- 3.4.5 Biological Components.- 4. A New Approach to Adaptive Filters.- 4.1 Survey of Some Necessary Functions.- 4.2 On the "Transfer Function" of the Neuron.- 4.3 Models for Basic Adaptive Units.- 4.3.1 On the Linearization of the Basic Unit.- 4.3.2 Various Cases of Adaptation Laws.- 4.3.3 Two Limit Theorems.- 4.3.4 The Novelty Detector.- 4.4 Adaptive Feedback Networks.- 4.4.1 The Autocorrelation Matrix Memory.- 4.4.2 The Novelty Filter.- 5. Self-Organizing Feature Maps.- 5.1 On the Feature Maps of the Brain.- 5.2 Formation of Localized Responses by Lateral Feedback.- 5.3 Computational Simplification of the Process.- 5.3.1 Definition of the Topology-Preserving Mapping.- 5.3.2 A Simple Two-Dimensional Self-Organizing System.- 5.4 Demonstrations of Simple Topology-Preserving Mappings.- 5.4.1 Images of Various Distributions of Input Vectors.- 5.4.2 "The Magic TV".- 5.4.3 Mapping by a Feeler Mechanism.- 5.5 Tonotopic Map.- 5.6 Formation of Hierarchical Representations.- 5.6.1 Taxonomy Example.- 5.6.2 Phoneme Map.- 5.7 Mathematical Treatment of Self-Organization.- 5.7.1 Ordering of Weights.- 5.7.2 Convergence Phase.- 5.8 Automatic Selection of Feature Dimensions.- 6. Optimal Associative Mappings.- 6.1 Transfer Function of an Associative Network.- 6.2 Autoassociative Recall as an Orthogonal Projection.- 6.2.1 Orthogonal Projections.- 6.2.2 Error-Correcting Properties of Projections.- 6.3 The Novelty Filter.- 6.3.1 Two Examples of Novelty Filter.- 6.3.2 Novelty Filter as an Autoassociative Memory.- 6.4 Autoassociative Encoding.- 6.4.1 An Example of Autoassociative Encoding.- 6.5 Optimal Associative Mappings.- 6.5.1 The Optimal Linear Associative Mapping.- 6.5.2 Optimal Nonlinear Associative Mappings.- 6.6 Relationship Between Associative Mapping, Linear Regression, and Linear Estimation.- 6.6.1 Relationship of the Associative Mapping to Linear Regression.- 6.6.2 Relationship of the Regression Solution to the Linear Estimator.- 6.7 Recursive Computation of the Optimal Associative Mapping.- 6.7.1 Linear Corrective Algorithms.- 6.7.2 Best Exact Solution (Gradient Projection).- 6.7.3 Best Approximate Solution (Regression).- 6.7.4 Recursive Solution in the General Case.- 6.8 Special Cases.- 6.8.1 The Correlation Matrix Memory.- 6.8.2 Relationship Between Conditional Averages and Optimal Estimator.- 7. Pattern Recognition.- 7.1 Discriminant Functions.- 7.2 Statistical Formulation of Pattern Classification.- 7.3 Comparison Methods.- 7.4 The Subspace Methods of Classification.- 7.4.1 The Basic Subspace Method.- 7.4.2 The Learning Subspace Method (LSM).- 7.5 Learning Vector Quantization.- 7.6 Feature Extraction.- 7.7 Clustering.- 7.7.1 Simple Clustering (Optimization Approach).- 7.7.2 Hierarchical Clustering (Taxonomy Approach).- 7.8 Structural Pattern Recognition Methods.- 8. More About Biological Memory.- 8.1 Physiological Foundations of Memory.- 8.1.1 On the Mechanisms of Memory in Biological Systems.- 8.1.2 Structural Features of Some Neural Networks.- 8.1.3 Functional Features of Neurons.- 8.1.4 Modelling of the Synaptic Plasticity.- 8.1.5 Can the Memory Capacity Ensue from Synaptic Changes?.- 8.2 The Unified Cortical Memory Model.- 8.2.1 The Laminar Network Organization.- 8.2.2 On the Roles of Interneurons.- 8.2.3 Representation of Knowledge Over Memory Fields.- 8.2.4 Self-Controlled Operation of Memory.- 8.3 Collateral Reading.- 8.3.1 Physiological Results Relevant to Modelling.- 8.3.2 Related Modelling.- 9. Notes on Neural Computing.- 9.1 First Theoretical Views of Neural Networks.- 9.2 Motives for the Neural Computing Research.- 9.3 What Could the Purpose of the Neural Networks be?.- 9.4 Definitions of Artificial "Neural Computing" and General Notes on Neural Modelling.- 9.5 Are the Biological Neural Functions Localized or Distributed?.- 9.6 Is Nonlinearity Essential to Neural Computing?.- 9.7 Characteristic Differences Between Neural and Digital Computers.- 9.7.1 The Degree of Parallelism of the Neural Networks is Still Higher than that of any "Massively Parallel" Digital Computer.- 9.7.2 Why the Neural Signals Cannot be Approximated by Boolean Variables.- 9.7.3 The Neural Circuits do not Implement Finite Automata.- 9.7.4 Undue Views of the Logic Equivalence of the Brain and Computers on a High Level.- 9.8 "Connectionist Models".- 9.9 How can the Neural Computers be Programmed?.- 10. Optical Associative Memories.- 10.1 Nonholographic Methods.- 10.2 General Aspects of Holographic Memories.- 10.3 A Simple Principle of Holographic Associative Memory.- 10.4 Addressing in Holographic Memories.- 10.5 Recent Advances of Optical Associative Memories.- Bibliography on Pattern Recognition.- References.

8,197 citations

Journal ArticleDOI
TL;DR: A model for a large network of "neurons" with a graded response (or sigmoid input-output relation) is studied and collective properties in very close correspondence with the earlier stochastic model based on McCulloch - Pitts neurons are studied.
Abstract: A model for a large network of "neurons" with a graded response (or sigmoid input-output relation) is studied. This deterministic system has collective properties in very close correspondence with the earlier stochastic model based on McCulloch - Pitts neurons. The content- addressable memory and other emergent collective properties of the original model also are present in the graded response model. The idea that such collective properties are used in biological systems is given added credence by the continued presence of such properties for more nearly biological "neurons." Collective analog electrical circuits of the kind described will certainly function. The collective states of the two models have a simple correspondence. The original model will continue to be useful for simulations, because its connection to graded response systems is established. Equations that include the effect of action potentials in the graded response system are also developed.

6,042 citations

Book
01 Jul 1988
TL;DR: In this article, a model for a large network of "neurons" with a graded response (or sigmoid input-output relation) is studied, which has collective properties in very close correspondence with the earlier stochastic model based on McCulloch--Pitts neurons.
Abstract: A model for a large network of "neurons" with a graded response (or sigmoid input--output relation) is studied. This deterministic system has collective properties in very close correspondence with the earlier stochastic model based on McCulloch--Pitts neurons. The content-addressable memory and other emergent collective properties of the original model also are present in the graded response model. The idea that such collective properties are used in biological systems is given added credence by the continued presence of such properties for more nearly biological "neurons." Collective analog electrical circuits of the kind described will certainly function. The collective states of the two models have a simple correspondence. The original model will continue to be useful for simulations, because its connection to graded response systems is established. Equations that include the effect of action potentials in the graded response system are also developed.

5,734 citations

Journal ArticleDOI
TL;DR: Results of computer simulations of a network designed to solve a difficult but well-defined optimization problem-the Traveling-Salesman Problem-are presented and used to illustrate the computational power of the networks.
Abstract: Highly-interconnected networks of nonlinear analog neurons are shown to be extremely effective in computing. The networks can rapidly provide a collectively-computed solution (a digital output) to a problem on the basis of analog input information. The problems to be solved must be formulated in terms of desired optima, often subject to constraints. The general principles involved in constructing networks to solve specific problems are discussed. Results of computer simulations of a network designed to solve a difficult but well-defined optimization problem-the Traveling-Salesman Problem-are presented and used to illustrate the computational power of the networks. Good solutions to this problem are collectively computed within an elapsed time of only a few neural time constants. The effectiveness of the computation involves both the nonlinear analog response of the neurons and the large connectivity among them. Dedicated networks of biological or microelectronic neurons could provide the computational capabilities described for a wide class of problems having combinatorial complexity. The power and speed naturally displayed by such collective networks may contribute to the effectiveness of biological information processing.

5,328 citations