scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cerebral organoids model human brain development and microcephaly

TL;DR: A human pluripotent stem cell-derived three-dimensional organoid culture system that develops various discrete, although interdependent, brain regions that include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes is developed.
Abstract: The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology has great potential to advance the study of tissue development, organ physiology and disease etiology.
Abstract: Organ-level physiology is recapitulated in vitro by culturing cells in perfused, microfluidic devices.

2,339 citations

Journal ArticleDOI
16 Jun 2016-Cell
TL;DR: 3D culture technology allow embryonic and adult mammalian stem cells to exhibit their remarkable self-organizing properties, and the resulting organoids reflect key structural and functional properties of organs such as kidney, lung, gut, brain and retina, and hold promise to predict drug response in a personalized fashion.

1,810 citations


Cites background from "Cerebral organoids model human brai..."

  • ...Lancaster and Knoblich took this approach to a next level by generating cerebral organoids, or ‘‘mini-brains’’: single neural organoids containing representations of several different brain regions (Lancaster et al., 2013)....

    [...]

  • ...The corresponding iPS cells made significant smaller ‘‘mini-brains,’’ containing only occasional neuroepithelial regionswith signs of remature neural differentiation, a phenotype that could be rescued by reintroducing the CDK5RAP2 protein (Lancaster et al., 2013)....

    [...]

  • ...Lancaster and Knoblich took this approach to a next level by generating cerebral organoids, or ‘‘mini-brains’’: single neural organoids containing representations of several different brain regions (Lancaster et al., 2013)....

    [...]

  • ...Since post-radiation hyposalivation often leads to irreversible and untreatable (A) A complex morphology with heterogeneous regions containing neural progenitors (SOX2, red) and neurons (TUJ1, green) is apparent (Lancaster et al., 2013)....

    [...]

  • ...A ‘‘Mini-Brain’’ Generated from PSCs (A) A complex morphology with heterogeneous regions containing neural progenitors (SOX2, red) and neurons (TUJ1, green) is apparent (Lancaster et al., 2013)....

    [...]

Journal ArticleDOI
18 Jul 2014-Science
TL;DR: These studies illustrated two key events in structural organization during organogenesis: cell sorting out and spatially restricted lineage commitment, which are recapitulated in organoids, which self-assemble to form the cellular organization of the organ itself.
Abstract: Classical experiments performed half a century ago demonstrated the immense self-organizing capacity of vertebrate cells. Even after complete dissociation, cells can reaggregate and reconstruct the original architecture of an organ. More recently, this outstanding feature was used to rebuild organ parts or even complete organs from tissue or embryonic stem cells. Such stem cell-derived three-dimensional cultures are called organoids. Because organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they have the potential to model human development and disease. Furthermore, they have potential for drug testing and even future organ replacement strategies. Here, we summarize this rapidly evolving field and outline the potential of organoid technology for future biomedical research.

1,737 citations

Journal ArticleDOI
19 May 2016-Cell
TL;DR: A miniaturized spinning bioreactor (SpinΩ) is developed to generate forebrain-specific organoids from human iPSCs that recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer.

1,526 citations


Cites background or methods or result from "Cerebral organoids model human brai..."

  • ...…pioneering studies showed that cerebral organoid systems offer improved growth conditions for 3D tissue, leading to a more representative model of the developing human brain (Danjo et al., 2011; Kadoshima et al., 2013; Lancaster et al., 2013; Mariani et al., 2015; Pasca et al., 2015)....

    [...]

  • ...One recent advance in cerebral organoid technology was the adoption of a spinning bioreactor to facilitate nutrient and oxygen absorption, which enables formation of longer neuroepithelium-like zones and supports growth of large, complex organoids that more closely resemble the developing human brain than had been achieved by previous approaches (Lancaster et al., 2013)....

    [...]

  • ...Second, the current cerebral organoid methodology (“intrinsic protocol”) is based on cell self-assembly without external control, and thus each organoid is typically comprised of diverse cell types found in forebrain, hindbrain, and retina (Lancaster et al., 2013)....

    [...]

  • ...This and other human cerebral organoid technologies (Kadoshima et al., 2013; Lancaster et al., 2013; Cell....

    [...]

  • ...Second, the current cerebral organoid methodology (‘‘intrinsic protocol’’) is based on cell self-assembly without external control, and thus each organoid is typically comprised of diverse cell types found in forebrain, hindbrain, and retina (Lancaster et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: A simple and reproducible 3D culture approach for generating a laminated cerebral cortex–like structure, named human cortical spheroids (hCSs), from pluripotent stem cells, which demonstrate that cortical neurons participate in network activity and produce complex synaptic events.
Abstract: The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

1,104 citations

References
More filters
Journal ArticleDOI
08 Jul 2011-Cell
TL;DR: In this paper, the authors discussed how proliferation of cells within the outer subventricular zone expands the human neocortex by increasing neuron number and modifying the trajectory of migrating neurons, and compared these features to other mammalian species and known molecular regulators of the mouse neocortex.

1,065 citations

Journal ArticleDOI
TL;DR: A rapid and convenient electroporation method for both gain- and loss-of-function studies in vivo and in vitro in the rodent retina is reported, which led to photoreceptor phenotypes similar to those of the corresponding knockout mice.
Abstract: The large number of candidate genes made available by comprehensive genome analysis requires that relatively rapid techniques for the study of function be developed. Here, we report a rapid and convenient electroporation method for both gain- and loss-of-function studies in vivo and in vitro in the rodent retina. Plasmid DNA directly injected into the subretinal space of neonatal rodent pups was taken up by a significant fraction of exposed cells after several pulses of high voltage. With this technique, GFP expression vectors were efficiently transfected into retinal cells with little damage to the operated pups. Transfected GFP allowed clear visualization of cell morphologies, and the expression persisted for at least 50 days. DNA-based RNA interference vectors directed against two transcription factors important in photoreceptor development led to photoreceptor phenotypes similar to those of the corresponding knockout mice. Reporter constructs carrying retinal cell type-specific promoters were readily introduced into the retina in vivo, where they exhibited the appropriate expression patterns. Plasmid DNA was also efficiently transfected into retinal explants in vitro by high-voltage pulses.

970 citations

Journal ArticleDOI
11 Aug 2011-Nature
TL;DR: It is shown that expression of miR-9/9* and MiR-124 in human fibroblasts induces their conversion into neurons, a process facilitated by NEUROD2.
Abstract: Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodelling complexes, a process important for neuronal differentiation and function. Nearing mitotic exit of neural progenitors, miR-9* and miR-124 repress the BAF53a subunit of the neural-progenitor (np)BAF chromatin-remodelling complex. After mitotic exit, BAF53a is replaced by BAF53b, and BAF45a by BAF45b and BAF45c, which are then incorporated into neuron-specific (n)BAF complexes essential for post-mitotic functions. Because miR-9/9* and miR-124 also control multiple genes regulating neuronal differentiation and function, we proposed that these miRNAs might contribute to neuronal fates. Here we show that expression of miR-9/9* and miR-124 (miR-9/9*-124) in human fibroblasts induces their conversion into neurons, a process facilitated by NEUROD2. Further addition of neurogenic transcription factors ASCL1 and MYT1L enhances the rate of conversion and the maturation of the converted neurons, whereas expression of these transcription factors alone without miR-9/9*-124 was ineffective. These studies indicate that the genetic circuitry involving miR-9/9*-124 can have an instructive role in neural fate determination.

914 citations

Journal ArticleDOI
01 Feb 2001-Neuron
TL;DR: Results show that Tbr1 is a common genetic determinant for the differentiation of early-born glutamatergic neocortical neurons and provide insights into the functions of these neurons as regulators of cortical development.

810 citations

Journal ArticleDOI
25 Aug 1995-Cell
TL;DR: Cellular and molecular evidence is provided that cortical neurons are generated from asymmetric divisions and that Notch1 immunoreactivity is inherited selectively by the basal (neuronal) daughter of horizontal divisions.

796 citations