scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cerebral organoids model human brain development and microcephaly

TL;DR: A human pluripotent stem cell-derived three-dimensional organoid culture system that develops various discrete, although interdependent, brain regions that include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes is developed.
Abstract: The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology has great potential to advance the study of tissue development, organ physiology and disease etiology.
Abstract: Organ-level physiology is recapitulated in vitro by culturing cells in perfused, microfluidic devices.

2,339 citations

Journal ArticleDOI
16 Jun 2016-Cell
TL;DR: 3D culture technology allow embryonic and adult mammalian stem cells to exhibit their remarkable self-organizing properties, and the resulting organoids reflect key structural and functional properties of organs such as kidney, lung, gut, brain and retina, and hold promise to predict drug response in a personalized fashion.

1,810 citations


Cites background from "Cerebral organoids model human brai..."

  • ...Lancaster and Knoblich took this approach to a next level by generating cerebral organoids, or ‘‘mini-brains’’: single neural organoids containing representations of several different brain regions (Lancaster et al., 2013)....

    [...]

  • ...The corresponding iPS cells made significant smaller ‘‘mini-brains,’’ containing only occasional neuroepithelial regionswith signs of remature neural differentiation, a phenotype that could be rescued by reintroducing the CDK5RAP2 protein (Lancaster et al., 2013)....

    [...]

  • ...Lancaster and Knoblich took this approach to a next level by generating cerebral organoids, or ‘‘mini-brains’’: single neural organoids containing representations of several different brain regions (Lancaster et al., 2013)....

    [...]

  • ...Since post-radiation hyposalivation often leads to irreversible and untreatable (A) A complex morphology with heterogeneous regions containing neural progenitors (SOX2, red) and neurons (TUJ1, green) is apparent (Lancaster et al., 2013)....

    [...]

  • ...A ‘‘Mini-Brain’’ Generated from PSCs (A) A complex morphology with heterogeneous regions containing neural progenitors (SOX2, red) and neurons (TUJ1, green) is apparent (Lancaster et al., 2013)....

    [...]

Journal ArticleDOI
18 Jul 2014-Science
TL;DR: These studies illustrated two key events in structural organization during organogenesis: cell sorting out and spatially restricted lineage commitment, which are recapitulated in organoids, which self-assemble to form the cellular organization of the organ itself.
Abstract: Classical experiments performed half a century ago demonstrated the immense self-organizing capacity of vertebrate cells. Even after complete dissociation, cells can reaggregate and reconstruct the original architecture of an organ. More recently, this outstanding feature was used to rebuild organ parts or even complete organs from tissue or embryonic stem cells. Such stem cell-derived three-dimensional cultures are called organoids. Because organoids can be grown from human stem cells and from patient-derived induced pluripotent stem cells, they have the potential to model human development and disease. Furthermore, they have potential for drug testing and even future organ replacement strategies. Here, we summarize this rapidly evolving field and outline the potential of organoid technology for future biomedical research.

1,737 citations

Journal ArticleDOI
19 May 2016-Cell
TL;DR: A miniaturized spinning bioreactor (SpinΩ) is developed to generate forebrain-specific organoids from human iPSCs that recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer.

1,526 citations


Cites background or methods or result from "Cerebral organoids model human brai..."

  • ...…pioneering studies showed that cerebral organoid systems offer improved growth conditions for 3D tissue, leading to a more representative model of the developing human brain (Danjo et al., 2011; Kadoshima et al., 2013; Lancaster et al., 2013; Mariani et al., 2015; Pasca et al., 2015)....

    [...]

  • ...One recent advance in cerebral organoid technology was the adoption of a spinning bioreactor to facilitate nutrient and oxygen absorption, which enables formation of longer neuroepithelium-like zones and supports growth of large, complex organoids that more closely resemble the developing human brain than had been achieved by previous approaches (Lancaster et al., 2013)....

    [...]

  • ...Second, the current cerebral organoid methodology (“intrinsic protocol”) is based on cell self-assembly without external control, and thus each organoid is typically comprised of diverse cell types found in forebrain, hindbrain, and retina (Lancaster et al., 2013)....

    [...]

  • ...This and other human cerebral organoid technologies (Kadoshima et al., 2013; Lancaster et al., 2013; Cell....

    [...]

  • ...Second, the current cerebral organoid methodology (‘‘intrinsic protocol’’) is based on cell self-assembly without external control, and thus each organoid is typically comprised of diverse cell types found in forebrain, hindbrain, and retina (Lancaster et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: A simple and reproducible 3D culture approach for generating a laminated cerebral cortex–like structure, named human cortical spheroids (hCSs), from pluripotent stem cells, which demonstrate that cortical neurons participate in network activity and produce complex synaptic events.
Abstract: The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

1,104 citations

References
More filters
Journal ArticleDOI
TL;DR: The results suggest that planar mitosis ensures the self-renewal of neuroepithelial progenitors by one daughter inheriting both apical and basal compartments during neurogenesis.
Abstract: Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis

473 citations

Journal ArticleDOI
TL;DR: It is shown that hiPSCs grown in suspension in the presence of rostral neuralizing factors can generate 3D structures containing polarized radial glia, intermediate progenitors, and a spectrum of layer-specific cortical neurons reminiscent of their organization in vivo.
Abstract: Human induced pluripotent stem cells (hiPSCs) are emerging as a tool for understanding human brain development at cellular, molecular, and genomic levels. Here we show that hiPSCs grown in suspension in the presence of rostral neuralizing factors can generate 3D structures containing polarized radial glia, intermediate progenitors, and a spectrum of layer-specific cortical neurons reminiscent of their organization in vivo. The hiPSC-derived multilayered structures express a gene expression profile typical of the embryonic telencephalon but not that of other CNS regions. Their transcriptome is highly enriched in transcription factors controlling the specification, growth, and patterning of the dorsal telencephalon and displays highest correlation with that of the early human cerebral cortical wall at 8–10 wk after conception. Thus, hiPSC are capable of enacting a transcriptional program specifying human telencephalic (pallial) development. This model will allow the study of human brain development as well as disorders of the human cerebral cortex.

446 citations

Journal ArticleDOI
01 Dec 2011-Nature
TL;DR: Efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells is reported, indicating functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions.
Abstract: The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke’s pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells. ES cells were stimulated to differentiate into non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate, and treated with hedgehog signalling. Self-organization of Rathke’s-pouch-like three-dimensional structures occurred at the interface of these two epithelia, as seen in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone and, when grafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Thus, functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions. Mouse embryonic stem cells are induced to form functional anterior pituitary tissue in three-dimensional culture. A three-dimensional cell culture system has been developed that produces functioning pituitary tissue from mouse embryonic stem cells. The cells differentiate into layered structures, the development of which depends on close juxtaposition of two tissue types in formations that resemble local tissue reactions seen in vivo. Endocrine cells including corticotrophs and somatotrophs are produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone, and transplantation of the pituitary tissues into a hypopituitary mouse model rescued a lethal deficiency in adrenocorticotropin. This work opens the possibility of developing regenerative therapies for pituitary defects, a major category of endocrinological disorders that includes empty sella syndrome, Sheehan syndrome and pituitary apoplexy.

436 citations

Journal ArticleDOI
TL;DR: The general role of the basal process is described in the self-renewal of neural progenitors and the loss of the apical junctions during oblique divisions is implicate as a possible mechanism for generating OSVZ progenites.
Abstract: Radial glia cells function as neural stem cells in the developing brain and generate self-renewing and differentiating daughter cells by asymmetric cell divisions. During these divisions, the apical process or basal process of the elongated epithelial structure is asymmetrically partitioned into daughter cells, depending on developmental contexts. However, in mammalian neurogenesis, the relationship between these subcellular structures and self-renewability is largely unknown. We induced oblique cleavages of radial glia cells to split the apical and basal processes into two daughters, and investigated the fate and morphology of the daughters in slice cultures. We observed that the more basal daughter cell that inherits the basal process self-renews outside of the ventricular zone (VZ), while the more apical daughter cell differentiates. These self-renewing progenitors, termed “outer VZ progenitors,” retain the basal but not the apical process, as recently reported for the outer subventricular zone (OSVZ) progenitors in primates (Fietz et al., 2010; Hansen et al., 2010); to self-renew, they require clonal Notch signaling between sibling cells. We also found a small endogenous population of outer VZ progenitors in the mouse embryonic neocortex, consistent with a low frequency of oblique radial glia divisions. Our results describe the general role of the basal process in the self-renewal of neural progenitors and implicate the loss of the apical junctions during oblique divisions as a possible mechanism for generating OSVZ progenitors. We propose that mouse outer VZ progenitors, induced by oblique cleavages, provide a model to study both progenitor self-renewal and OSVZ progenitors.

400 citations

Journal ArticleDOI
30 Oct 2009-Cell
TL;DR: It is demonstrated that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development and establishes RA as a potent, meningeal-derived cue required for successful corticogenesis.

356 citations