scispace - formally typeset
Search or ask a question
Journal ArticleDOI

CH3NH3PbI3 perovskites: Ferroelasticity revealed

TL;DR: Experiments show that the configuration of CH3NH3PbI3 ferroelastic domains in single crystals and polycrystalline films can be controlled with applied stress, suggesting that strain engineering may be used to tune the properties of this material.
Abstract: Ferroelectricity has been proposed as a plausible mechanism to explain the high photovoltaic conversion efficiency in organic-inorganic perovskites; however, convincing experimental evidence in support of this hypothesis is still missing. Identifying and distinguishing ferroelectricity from other properties, such as piezoelectricity, ferroelasticity, etc., is typically nontrivial because these phenomena can coexist in many materials. In this work, a combination of microscopic and nanoscale techniques provides solid evidence for the existence of ferroelastic domains in both CH3NH3PbI3 polycrystalline films and single crystals in the pristine state and under applied stress. Experiments show that the configuration of CH3NH3PbI3 ferroelastic domains in single crystals and polycrystalline films can be controlled with applied stress, suggesting that strain engineering may be used to tune the properties of this material. No evidence of concomitant ferroelectricity was observed. Because grain boundaries have an impact on the long-term stability of organic-inorganic perovskite devices, and because the ferroelastic domain boundaries may differ from regular grain boundaries, the discovery of ferroelasticity provides a new variable to consider in the quest for improving their stability and enabling their widespread adoption.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Abstract: The photovoltaics of organic–inorganic lead halide perovskite materials have shown rapid improvements in solar cell performance, surpassing the top efficiency of semiconductor compounds such as CdTe and CIGS (copper indium gallium selenide) used in solar cells in just about a decade. Perovskite preparation via simple and inexpensive solution processes demonstrates the immense potential of this thin-film solar cell technology to become a low-cost alternative to the presently commercially available photovoltaic technologies. Significant developments in almost all aspects of perovskite solar cells and discoveries of some fascinating properties of such hybrid perovskites have been made recently. This Review describes the fundamentals, recent research progress, present status, and our views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices. Strategies and challenges regardi...

1,720 citations

Journal ArticleDOI
TL;DR: An insight into the analogies, state-of-the-art technologies, concepts, and prospects under the umbrella of perovskite materials (both inorganic-organic hybrid halideperovskites and ferroelectric perovkites) for future multifunctional energy conversion and storage devices is provided.
Abstract: An insight into the analogies, state-of-the-art technologies, concepts, and prospects under the umbrella of perovskite materials (both inorganic-organic hybrid halide perovskites and ferroelectric perovskites) for future multifunctional energy conversion and storage devices is provided. Often, these are considered entirely different branches of research; however, considering them simultaneously and holistically can provide several new opportunities. Recent advancements have highlighted the potential of hybrid perovskites for high-efficiency solar cells. The intrinsic polar properties of these materials, including the potential for ferroelectricity, provide additional possibilities for simultaneously exploiting several energy conversion mechanisms such as the piezoelectric, pyroelectric, and thermoelectric effect and electrical energy storage. The presence of these phenomena can support the performance of perovskite solar cells. The energy conversion using these effects (piezo-, pyro-, and thermoelectric effect) can also be enhanced by a change in the light intensity. Thus, there lies a range of possibilities for tuning the structural, electronic, optical, and magnetic properties of perovskites to simultaneously harvest energy using more than one mechanism to realize an improved efficiency. This requires a basic understanding of concepts, mechanisms, corresponding material properties, and the underlying physics involved with these effects.

1,015 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes advances in understanding the unique physical properties of hybrid perovskites that enable the fabrication of high-efficiency solar cells with high open-circuit voltages, which is crucial for their further development towards commercialization.
Abstract: This Review summarizes advances in understanding the unique physical properties of hybrid perovskites that enable the fabrication of high-efficiency solar cells with high open-circuit voltages, which is crucial for their further development towards commercialization.

846 citations

Journal ArticleDOI
TL;DR: A complete fundamental understanding of defect nature in MHPs is needed to further improve their optoelectronic functionalities.
Abstract: In several photovoltaic (PV) technologies, the presence of electronic defects within the semiconductor band gap limit the efficiency, reproducibility, as well as lifetime. Metal halide perovskites (MHPs) have drawn great attention because of their excellent photovoltaic properties that can be achieved even without a very strict film-growth control processing. Much has been done theoretically in describing the different point defects in MHPs. Herein, we discuss the experimental challenges in thoroughly characterizing the defects in MHPs such as, experimental assignment of the type of defects, defects densities, and the energy positions within the band gap induced by these defects. The second topic of this Review is passivation strategies. Based on a literature survey, the different types of defects that are important to consider and need to be minimized are examined. A complete fundamental understanding of defect nature in MHPs is needed to further improve their optoelectronic functionalities.

271 citations

References
More filters
Journal ArticleDOI
TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Abstract: Two organolead halide perovskite nanocrystals, CH3NH3PbBr3 and CH3NH3PbI3, were found to efficiently sensitize TiO2 for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO2 films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH3NH3PbI3-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH3NH3PbBr3-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.

16,634 citations

Journal ArticleDOI
02 Nov 2012-Science
TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Abstract: The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

9,158 citations

Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Abstract: Within the space of a few years, hybrid organic–inorganic perovskite solar cells have emerged as one of the most exciting material platforms in the photovoltaic sector. This review describes the rapid progress that has been made in this area.

5,463 citations