scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China.

TL;DR: It is found that social distancing alone, as implemented in China during the outbreak, is sufficient to control COVID-19, and children 0 to 14 years of age are less susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Abstract: Intense nonpharmaceutical interventions were put in place in China to stop transmission of the novel coronavirus disease 2019 (COVID-19). As transmission intensifies in other countries, the interplay between age, contact patterns, social distancing, susceptibility to infection, and COVID-19 dynamics remains unclear. To answer these questions, we analyze contact survey data for Wuhan and Shanghai before and during the outbreak and contact-tracing information from Hunan province. Daily contacts were reduced seven- to eightfold during the COVID-19 social distancing period, with most interactions restricted to the household. We find that children 0 to 14 years of age are less susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than adults 15 to 64 years of age (odds ratio 0.34, 95% confidence interval 0.24 to 0.49), whereas individuals more than 65 years of age are more susceptible to infection (odds ratio 1.47, 95% confidence interval 1.12 to 1.92). Based on these data, we built a transmission model to study the impact of social distancing and school closure on transmission. We find that social distancing alone, as implemented in China during the outbreak, is sufficient to control COVID-19. Although proactive school closures cannot interrupt transmission on their own, they can reduce peak incidence by 40 to 60% and delay the epidemic.
Citations
More filters
Journal ArticleDOI
TL;DR: It is found that interventions aimed at children might have a relatively small impact on reducing SARS-CoV-2 transmission, particularly if the transmissibility of subclinical infections is low.
Abstract: The COVID-19 pandemic has shown a markedly low proportion of cases among children1–4. Age disparities in observed cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. We evaluate these possibilities by fitting an age-structured mathematical model to epidemic data from China, Italy, Japan, Singapore, Canada and South Korea. We estimate that susceptibility to infection in individuals under 20 years of age is approximately half that of adults aged over 20 years, and that clinical symptoms manifest in 21% (95% credible interval: 12–31%) of infections in 10- to 19-year-olds, rising to 69% (57–82%) of infections in people aged over 70 years. Accordingly, we find that interventions aimed at children might have a relatively small impact on reducing SARS-CoV-2 transmission, particularly if the transmissibility of subclinical infections is low. Our age-specific clinical fraction and susceptibility estimates have implications for the expected global burden of COVID-19, as a result of demographic differences across settings. In countries with younger population structures—such as many low-income countries—the expected per capita incidence of clinical cases would be lower than in countries with older population structures, although it is likely that comorbidities in low-income countries will also influence disease severity. Without effective control measures, regions with relatively older populations could see disproportionally more cases of COVID-19, particularly in the later stages of an unmitigated epidemic. A new epidemiological study shows reduced susceptibility to SARS-CoV-2 and decreased risk of developing severe symptoms in people aged younger than 20 years, suggesting that children have limited contribution to spread of COVID-19.

1,281 citations

Journal ArticleDOI
TL;DR: There is preliminary evidence that children and adolescents have lower susceptibility to SARS-CoV-2, with the pooled odds ratio of 0.56 for being an infected contact compared with adults, although seroprevalence in adolescents appeared similar to adults.
Abstract: Importance The degree to which children and adolescents are infected by and transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. The role of children and adolescents in transmission of SARS-CoV-2 is dependent on susceptibility, symptoms, viral load, social contact patterns, and behavior. Objective To systematically review the susceptibility to and transmission of SARS-CoV-2 among children and adolescents compared with adults. Data Sources PubMed and medRxiv were searched from database inception to July 28, 2020, and a total of 13 926 studies were identified, with additional studies identified through hand searching of cited references and professional contacts. Study Selection Studies that provided data on the prevalence of SARS-CoV-2 in children and adolescents (younger than 20 years) compared with adults (20 years and older) derived from contact tracing or population screening were included. Single-household studies were excluded. Data Extraction and Synthesis PRISMA guidelines for abstracting data were followed, which was performed independently by 2 reviewers. Quality was assessed using a critical appraisal checklist for prevalence studies. Random-effects meta-analysis was undertaken. Main Outcomes and Measures Secondary infection rate (contact-tracing studies) or prevalence or seroprevalence (population screening studies) among children and adolescents compared with adults. Results A total of 32 studies comprising 41 640 children and adolescents and 268 945 adults met inclusion criteria, including 18 contact-tracing studies and 14 population screening studies. The pooled odds ratio of being an infected contact in children compared with adults was 0.56 (95% CI, 0.37-0.85), with substantial heterogeneity (I2 = 94.6%). Three school-based contact-tracing studies found minimal transmission from child or teacher index cases. Findings from population screening studies were heterogenous and were not suitable for meta-analysis. Most studies were consistent with lower seroprevalence in children compared with adults, although seroprevalence in adolescents appeared similar to adults. Conclusions and Relevance In this meta-analysis, there is preliminary evidence that children and adolescents have lower susceptibility to SARS-CoV-2, with an odds ratio of 0.56 for being an infected contact compared with adults. There is weak evidence that children and adolescents play a lesser role than adults in transmission of SARS-CoV-2 at a population level. This study provides no information on the infectivity of children.

698 citations

Journal ArticleDOI
TL;DR: The future of public health is likely to become increasingly digital, and the need for the alignment of international strategies for the regulation, evaluation and use of digital technologies to strengthen pandemic management, and future preparedness for COVID-19 and other infectious diseases is reviewed.
Abstract: Digital technologies are being harnessed to support the public-health response to COVID-19 worldwide, including population surveillance, case identification, contact tracing and evaluation of interventions on the basis of mobility data and communication with the public. These rapid responses leverage billions of mobile phones, large online datasets, connected devices, relatively low-cost computing resources and advances in machine learning and natural language processing. This Review aims to capture the breadth of digital innovations for the public-health response to COVID-19 worldwide and their limitations, and barriers to their implementation, including legal, ethical and privacy barriers, as well as organizational and workforce barriers. The future of public health is likely to become increasingly digital, and we review the need for the alignment of international strategies for the regulation, evaluation and use of digital technologies to strengthen pandemic management, and future preparedness for COVID-19 and other infectious diseases.

636 citations

Journal ArticleDOI
TL;DR: An agent-based model of SARS-CoV-2 transmission shows that testing, contact tracing and household quarantine could keep new COVID-19 waves under control while allowing the reopening of the economy with minimal social-distancing interventions.
Abstract: While severe social-distancing measures have proven effective in slowing the coronavirus disease 2019 (COVID-19) pandemic, second-wave scenarios are likely to emerge as restrictions are lifted. Here we integrate anonymized, geolocalized mobility data with census and demographic data to build a detailed agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in the Boston metropolitan area. We find that a period of strict social distancing followed by a robust level of testing, contact-tracing and household quarantine could keep the disease within the capacity of the healthcare system while enabling the reopening of economic activities. Our results show that a response system based on enhanced testing and contact tracing can have a major role in relaxing social-distancing interventions in the absence of herd immunity against SARS-CoV-2.

625 citations

References
More filters
Journal ArticleDOI
TL;DR: There is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019 and considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere.
Abstract: Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the...

13,101 citations

Book
11 Jul 1991
TL;DR: This book discusses the biology of host-microparasite associations, dynamics of acquired immunity heterogeneity within the human community indirectly transmitted helminths, and the ecology and genetics of hosts and parasites.
Abstract: Part 1 Microparasites: biology of host-microparasite associations the basic model - statics static aspects of eradication and control the basic model - dynamics dynamic aspects of eradication and control beyond the basic model - empirical evidence of inhomogeneous mixing age-related transmission rates genetic heterogeneity social heterogeneity and sexually transmitted diseases spatial and other kinds of heterogeneity endemic infections in developing countries indirectly transmitted microparasites. Part 2 Macroparasites: biology of host-macroparasite associations the basic model - statics the basic model - dynamics acquired immunity heterogeneity within the human community indirectly transmitted helminths experimental epidemiology parasites, genetic variability, and drug resistance the ecology and genetics of host-parasite associations.

7,675 citations

Book
01 Jan 1990
TL;DR: In this paper, the authors present a tour of categorical data analysis for Contingency Tables and Logit and Loglinear models for contingency tables, as well as generalized linear models for Matched Pairs.
Abstract: Two--Way Contingency Tables. Three--Way Contingency Tables. Generalized Linear Models. Logistic Regression. Loglinear Models for Contingency Tables. Building and Applying Logit and Loglinear Models. Multicategory Logit Models. Models for Matched Pairs. A Twentieth--Century Tour of Categorical Data Analysis. Appendix. Table of Chi--Squared Distribution Values for Various Right--Tail Probabilities. Bibliography. Indexes.

7,062 citations

Journal ArticleDOI
TL;DR: It is inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1–2 weeks, and that other major Chinese cities are probably sustaining localised outbreaks.

3,938 citations


"Changes in contact patterns shape t..." refers background in this paper

  • ...In the early phases of COVID-19 spread in Wuhan, before interventions were put in place, R0 values were estimated to range between 2.0 and 3.5 (12) (13) (14) (15) (16) (17) (18) ....

    [...]

Journal ArticleDOI
TL;DR: It is shown that in certain special cases one can easily compute or estimate the expected number of secondary cases produced by a typical infected individual during its entire period of infectiousness in a completely susceptible population.
Abstract: The expected number of secondary cases produced by a typical infected individual during its entire period of infectiousness in a completely susceptible population is mathematically defined as the dominant eigenvalue of a positive linear operator. It is shown that in certain special cases one can easily compute or estimate this eigenvalue. Several examples involving various structuring variables like age, sexual disposition and activity are presented.

3,885 citations

Related Papers (5)