scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Changes in resting-state functional connectivity in neuropsychiatric lupus: A dynamic approach based on recurrence quantification analysis

TL;DR: In this article, the relative sensitivity of cross recurrence quantification analysis (CRQA) to identify aberrant functional brain connectivity in patients with systemic lupus erythematosus (NPSLE) in comparison with conventional static and dynamic bivariate FC measures, as well as univariate (nodal) RQA was assessed.
About: This article is published in Biomedical Signal Processing and Control.The article was published on 2022-02-01 and is currently open access. It has received 4 citations till now. The article focuses on the topics: Recurrence quantification analysis & Resting state fMRI.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a functional connectomic approach using resting-state functional MRI (rs-fMRI) has shown great potential and promising diagnostic capabilities across multiple clinical scenarios, including mTBI.
Abstract: Traumatic Brain Injury (TBI) is a frequently occurring condition and approximately 90% of TBI cases are classified as mild (mTBI). However, conventional MRI has limited diagnostic and prognostic value, thus warranting the utilization of additional imaging modalities and analysis procedures. The functional connectomic approach using resting-state functional MRI (rs-fMRI) has shown great potential and promising diagnostic capabilities across multiple clinical scenarios, including mTBI. Additionally, there is increasing recognition of a fundamental role of brain dynamics in healthy and pathological cognition. Here, we undertake an in-depth investigation of mTBI-related connectomic disturbances and their emotional and cognitive correlates. We leveraged machine learning and graph theory to combine static and dynamic functional connectivity (FC) with regional entropy values, achieving classification accuracy up to 75% (77, 74 and 76% precision, sensitivity and specificity, respectively). As compared to healthy controls, the mTBI group displayed hypoconnectivity in the temporal poles, which correlated positively with semantic (r = 0.43, p < 0.008) and phonemic verbal fluency (r = 0.46, p < 0.004), while hypoconnectivity in the right dorsal posterior cingulate correlated positively with depression symptom severity (r = 0.54, p < 0.0006). These results highlight the importance of residual FC in these regions for preserved cognitive and emotional function in mTBI. Conversely, hyperconnectivity was observed in the right precentral and supramarginal gyri, which correlated negatively with semantic verbal fluency (r=-0.47, p < 0.003), indicating a potential ineffective compensatory mechanism. These novel results are promising toward understanding the pathophysiology of mTBI and explaining some of its most lingering emotional and cognitive symptoms.

2 citations

Journal ArticleDOI
TL;DR: In this paper , cross-recurrence quantification analysis (CRQA) of resting-state functional MRI (rs-fMRI) data was performed in 44 patients with neuropsychiatric SLE, 20 patients without NPSLE and 35 healthy controls (HCs).
Abstract: Objective Τo determine whole-brain and regional functional connectivity (FC) characteristics of patients with neuropsychiatric SLE (NPSLE) or without neuropsychiatric manifestations (non-NPSLE) and examine their association with cognitive performance. Methods Cross-recurrence quantification analysis (CRQA) of resting-state functional MRI (rs-fMRI) data was performed in 44 patients with NPSLE, 20 patients without NPSLE and 35 healthy controls (HCs). Volumetric analysis of total brain and specific cortical and subcortical regions, where significant connectivity changes were identified, was performed. Cognitive status of patients with NPSLE was assessed by neuropsychological tests. Group comparisons on nodal FC, global network metrics and regional volumetrics were conducted, and associations with cognitive performance were estimated (at p<0.05 false discovery rate corrected). Results FC in patients with NPSLE was characterised by increased modularity (mean (SD)=0.31 (0.06)) as compared with HCs (mean (SD)=0.27 (0.06); p=0.05), hypoconnectivity of the left (mean (SD)=0.06 (0.018)) and right hippocampi (mean (SD)=0.051 (0.0.16)), and of the right amygdala (mean (SD)=0.091 (0.039)), as compared with HCs (mean (SD)=0.075 (0.022), p=0.02; 0.065 (0.019), p=0.01; 0.14 (0.096), p=0.05, respectively). Hyperconnectivity of the left angular gyrus (NPSLE/HCs: mean (SD)=0.29 (0.26) and 0.10 (0.09); p=0.01), left (NPSLE/HCs: mean (SD)=0.16 (0.09) and 0.09 (0.05); p=0.01) and right superior parietal lobule (SPL) (NPSLE/HCs: mean (SD)=0.25 (0.19) and 0.13 (0.13), p=0.01) was noted in NPSLE versus HC groups. Among patients with NPSLE, verbal episodic memory scores were positively associated with connectivity (local efficiency) of the left hippocampus (r2=0.22, p=0.005) and negatively with local efficiency of the left angular gyrus (r2=0.24, p=0.003). Patients without NPSLE displayed hypoconnectivity of the right hippocampus (mean (SD)=0.056 (0.014)) and hyperconnectivity of the left angular gyrus (mean (SD)=0.25 (0.13)) and SPL (mean (SD)=0.17 (0.12)). Conclusion By using dynamic CRQA of the rs-fMRI data, distorted FC was found globally, as well as in medial temporal and parietal brain regions in patients with SLE, that correlated significantly and adversely with memory capacity in NPSLE. These results highlight the value of dynamic approaches to assessing impaired brain network function in patients with lupus with and without neuropsychiatric symptoms.
Book ChapterDOI
15 Mar 2023
TL;DR: In this paper , a nonlinear analysis framework tailored for time-series data is provided, enabling the safe quantification of underlying evolutionary dynamics, which describe the referring empirical data generating process.
Abstract: Within this chapter, a practical introduction to a nonlinear analysis framework tailored for time-series data is provided, enabling the safe quantification of underlying evolutionary dynamics, which describe the referring empirical data generating process. Furthermore, its application provides the possibility to distinct between underlying chaotic versus stochastic dynamics. In addition, an optional combination with (strange) attractor reconstruction algorithms to visualize the denoted system’s dynamics is possible. Since the framework builds upon a large variety of algorithms and methods, its application is by far trivial, especially, in hindsight of reconstruction algorithms for (strange) attractors. Therefore, a general implementation and application guideline for the correct algorithm specifications and avoidance of pitfalls or other unfavorable settings is proposed and respective (graphical) empirical examples are shown. It is intended to provide the readers the possibility to incorporate the proposed analysis framework themselves and to conduct the analyses and reconstructions properly with correct specifications and to be knowledgeable about misleading propositions or parameter choices. Finally, concluding remarks, future avenues of research and future refinements of the framework are proposed.
Journal ArticleDOI
TL;DR: In this paper , the authors used a support vector machine to discriminate first-episode drug-naïve schizophrenia (FES) patients and 53 healthy controls (HCs) from HCs.
References
More filters
Journal ArticleDOI
TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.

13,678 citations

Journal ArticleDOI
TL;DR: A component based method for the reduction of noise in both blood oxygenation level-dependent (BOLD) and perfusion-based functional magnetic resonance imaging (fMRI) data is presented and the temporal standard deviation of resting-state perfusion and BOLD data in gray matter regions was significantly reduced.

3,370 citations

Journal ArticleDOI
04 Jul 2013-PLOS ONE
TL;DR: This work has developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models, and helps researchers to visualize brain networks in an easy, flexible and quick manner.
Abstract: The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

3,048 citations

Journal ArticleDOI
TL;DR: The aim of this work is to provide the readers with the know how for the application of recurrence plot based methods in their own field of research, and detail the analysis of data and indicate possible difficulties and pitfalls.

2,993 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe an approach to assess whole-brain functional connectivity dynamics based on spatial independent component analysis, sliding time window correlation, and k-means clustering of windowed correlation matrices.
Abstract: Spontaneous fluctuations are a hallmark of recordings of neural signals, emergent over time scales spanning milliseconds and tens of minutes. However, investigations of intrinsic brain organization based on resting-state functional magnetic resonance imaging have largely not taken into account the presence and potential of temporal variability, as most current approaches to examine functional connectivity (FC) implicitly assume that relationships are constant throughout the length of the recording. In this work, we describe an approach to assess whole-brain FC dynamics based on spatial independent component analysis, sliding time window correlation, and k-means clustering of windowed correlation matrices. The method is applied to resting-state data from a large sample (n = 405) of young adults. Our analysis of FC variability highlights particularly flexible connections between regions in lateral parietal and cingulate cortex, and argues against a labeling scheme where such regions are treated as separate and antagonistic entities. Additionally, clustering analysis reveals unanticipated FC states that in part diverge strongly from stationary connectivity patterns and challenge current descriptions of interactions between large-scale networks. Temporal trends in the occurrence of different FC states motivate theories regarding their functional roles and relationships with vigilance/arousal. Overall, we suggest that the study of time-varying aspects of FC can unveil flexibility in the functional coordination between different neural systems, and that the exploitation of these dynamics in further investigations may improve our understanding of behavioral shifts and adaptive processes.

2,455 citations

Related Papers (5)