scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry

27 Jul 1979-Brain Research (Brain Res)-Vol. 171, Iss: 1, pp 11-28
TL;DR: The results indicated that the deprivation caused by monocular suture produced a decrease in the cytochrome oxidase staining of the binocular segment of the deprived geniculate laminae of kittens, leading to a significant decreases in the level of oxidative enzyme activity one to several synapses away.
About: This article is published in Brain Research.The article was published on 1979-07-27. It has received 1862 citations till now. The article focuses on the topics: Ocular dominance column & Enucleation.
Citations
More filters
Journal ArticleDOI
27 Dec 1996-Cell
TL;DR: The results strongly suggest that activity-dependent modifications of CA1 synapses, mediated by NMDA receptors, play an essential role in the acquisition of spatial memories.

1,789 citations


Cites methods from "Changes in the visual system of mon..."

  • ...formed using the protocol described by Wong-Riley (1979) ....

    [...]

  • ...Three rectangular drawings (50 3 70 cm2) withformed using the protocol described by Wong-Riley (1979). geometric designs, placed on the curtain wall (120 cm height) and brightly illuminated, served as the distal cues....

    [...]

Journal ArticleDOI
TL;DR: The results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system.
Abstract: Staining for the mitochondrial enzyme cytochrome oxidase reveals an array of dense regions (blobs) in the primate primary visual cortex. They are most obvious in the upper layers, 2 and 3, but can also be seen in layers 4B, 5, and 6, in register with the blobs in layers 2 and 3. We compared cells inside and outside blobs in macaque and squirrel monkeys, looking at their physiological responses and anatomical connections. Cells within blobs did not show orientation selectivity, whereas cells between blobs were highly orientation selective. Receptive fields of blob cells had circular symmetry and were of three main types, Broad-Band Center-Surround, Red-Green Double-Opponent, and Yellow-Blue Double-Opponent. Double-Opponent cells responded poorly or not at all to white light in any form, or to diffuse light at any wavelength. In contrast to blob cells, none of the cells recorded in layer 4C beta were Double-Opponent: like the majority of cells in the parvocellular geniculate layers, they were either Broad-Band or Color-Opponent Center-Surround, e.g., red-on-center green-off-surround. To our surprise cells in layer 4C alpha were orientation selective. In tangential penetrations throughout layers 2 and 3, optium orientation, when plotted against electrode position, formed long, regular, usually linear sequences, which were interrupted but not perturbed by the blobs. Staining area 18 for cytochrome oxidase reveals a series of alternating wide and narrow dense stripes, separated by paler interstripes. After small injections of horseradish peroxidase into area 18, we saw a precise set of connections from the blobs in area 17 to thin stripes in area 18, and from the interblob regions in area 17 to interstripes in area 18. Specific reciprocal connections also ran from thin stripes to blobs and from interstripes to interblobs. We have not yet determined the area 17 connections to thick stripes in area 18. In addition, within area 18 there are stripe-to-stripe and interstripe-to-interstripe intrinsic connections. These results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system. Color, encoded in three coordinates by the major blob cell types, red-green, yellow-blue, and black-white, can be transformed into the three coordinates, red, green, and blue, of the Retinex algorithm of Land.

1,546 citations


Cites background or methods from "Changes in the visual system of mon..."

  • ...Sections were cut at 30 to 60 pm thickness and alternate sections were reacted for cytochrome oxidase (Wong-Riley, 1979b) or by the tetramethylbenzidine reaction for horseradish peroxidase (Mesulam, 1982)....

    [...]

  • ...Wong-Riley (1979a) saw these patchy intra-18 connections but, ironically, at that time, could not have made the correlation with cytochrome oxidase staining....

    [...]

  • ...When Wong-Riley (1978, 1979a ) injected a mixture of horseradish peroxidase and [3H]leucine into area 18, she found patchy labeling in area 17 in both the peroxi- dase-reacted sections and the autoradiograms, and the puffs of anterograde transport of the labeled amino acid coincided precisely with…...

    [...]

Journal ArticleDOI
TL;DR: This work has shown that the entire neuron is often not metabolically homogeneous; most of the oxidative activity is usually found in dendrites, and revealed the dynamic metabolic responses of developing and mature neurons to altered functional demands.

1,220 citations

Journal ArticleDOI
TL;DR: Different functional regions of the NTS/area postrema complex and medullary reticular formation were found to innervate largely nonoverlapping zones in the PB.
Abstract: We examined the subnuclear organization of projections to the parabrachial nucleus (PB) from the nucleus of the solitary tract (NTS), area postrema, and medullary reticular formation in the rat by using the anterograde and retrograde transport of wheat germ agglutinin-horseradish peroxidase conjugate and anterograde tracing with Phaseolus vulgaris-leucoagglutinin. Different functional regions of the NTS/area postrema complex and medullary reticular formation were found to innervate largely nonoverlapping zones in the PB. The general visceral part of the NTS, including the medial, parvicellular, intermediate, and commissural NTS subnuclei and the core of the area postrema, projects to restricted terminal zones in the inner portion of the external lateral PB, the central and dorsal lateral PB subnuclei, and the "waist" area. The dorsomedial NTS subnucleus and the rim of the area postrema specifically innervate the outer portion of the external lateral PB subnucleus. In addition, the medial NTS innervates the caudal lateral part of the external medial PB subnucleus. The respiratory part of the NTS, comprising the ventrolateral, intermediate, and caudal commissural subnuclei, is reciprocally connected with the Kolliker-Fuse nucleus, and with the far lateral parts of the dorsal and central lateral PB subnuclei. There is also a patchy projection to the caudal lateral part of the external medial PB subnucleus from the ventrolateral NTS. The rostral, gustatory part of the NTS projects mainly to the caudal medial parts of the PB complex, including the "waist" area, as well as more rostrally to parts of the medial, external medial, ventral, and central lateral PB subnuclei. The connections of different portions of the medullary reticular formation with the PB complex reflect the same patterns of organization, but are reciprocal. The periambiguus region is reciprocally connected with the same PB subnuclei as the ventrolateral NTS; the rostral ventrolateral reticular nucleus with the same PB subnuclei as both the ventrolateral (respiratory) and medial (general visceral) NTS; and the parvicellular reticular area, adjacent to the rostral NTS, with parts of the central and ventral lateral and the medial PB subnuclei that also receive rostral (gustatory) NTS input. In addition, the rostral ventrolateral reticular nucleus and the parvicellular reticular formation have more extensive connections with parts of the rostral PB and the subjacent reticular formation that receive little if any NTS input. The PB contains a series of topographically complex terminal domains reflecting the functional organization of its afferent sources in the NTS and medullary reticular formation.

934 citations

Journal ArticleDOI
27 Jul 1990-Science
TL;DR: A high spatial resolution optical imaging system was developed to visualize cerebral cortical activity in vivo and found no ocular dominance organization was seen, while regions of poor orientation tuning colocalized to every other cytochrome oxidase stripe.
Abstract: A high spatial resolution optical imaging system was developed to visualize cerebral cortical activity in vivo. This method is based on activity-dependent intrinsic signals and does not use voltage-sensitive dyes. Images of the living monkey striate (VI) and extrastriate (V2) visual cortex, taken during visual stimulation, were analyzed to yield maps of the distribution of cells with various functional properties. The cytochrome oxidase--rich blobs of V1 and the stripes of V2 were imaged in the living brain. In V2, no ocular dominance organization was seen, while regions of poor orientation tuning colocalized to every other cytochrome oxidase stripe. The orientation tuning of other regions of V2 appeared organized as modules that are larger and more uniform than those in V1.

822 citations

References
More filters
Journal ArticleDOI
TL;DR: Kittens were visually deprived by suturing the lids of the right eye for various periods of time at different ages to study the effect of monocular eye closure on the number of cells that can be influenced by the previously closed eye.
Abstract: 1. Kittens were visually deprived by suturing the lids of the right eye for various periods of time at different ages. Recordings were subsequently made from the striate cortex, and responses from the two eyes compared. As previously reported, monocular eye closure during the first few months of life causes a sharp decline in the number of cells that can be influenced by the previously closed eye. 2. Susceptibility to the effects of eye closure begins suddenly near the start of the fourth week, remains high until some time between the sixth and eighth weeks, and then declines, disappearing finally around the end of the third month. Monocular closure for over a year in an adult cat produces no detectable effects. 3. During the period of high susceptibility in the fourth and fifth weeks eye closure for as little as 3-4 days leads to a sharp decline in the number of cells that can be driven from both eyes, as well as an over-all decline in the relative influence of the previously closed eye. A 6-day closure is enough to give a reduction in the number of cells that can be driven by the closed eye to a fraction of the normal. The physiological picture is similar to that following a 3-month monocular deprivation from birth, in which the proportion of cells the eye can influence drops from 85 to about 7%. 4. Cells of the lateral geniculate receiving input from a deprived eye are noticeably smaller and paler to Nissl stain following 3 or 6 days' deprivation during the fourth week. 5. Following 3 months of monocular deprivation, opening the eye for up to 5 yr produces only a very limited recovery in the cortical physiology, and no obvious recovery of the geniculate atrophy, even though behaviourally there is some return of vision in the deprived eye. Closing the normal eye, though necessary for behavioural recovery, has no detectable effect on the cortical physiology. The amount of possible recovery in the striate cortex is probably no greater if the period of eye closure is limited to weeks, but after a 5-week closure there is a definite enhancement of the recovery, even though it is far from complete.

2,697 citations

Journal ArticleDOI
TL;DR: Preliminary experiments suggest that the layer IVC columns in juvenile macaque monkeys are not fully developed until some weeks after birth, which explains the critical period for deprivation effects in the layerIV columns.
Abstract: Ocular dominance columns were examined by a variety of techniques in juvenile macaque monkeys in which one eye had been removed or sutured closed soon after birth. In two monkeys the removal was done at 2 weeks and the cortex studied at 1\frac{1}{2} years. Physiological recordings showed continuous responses as an electrode advanced along layer IVC in a direction parallel to the surface. Examination of the cortex with the Fink-Heimer modification of the Nauta method after lesions confined to single lateral-geniculate layers showed a marked increase, in layer IVC, in the widths of columns belonging to the surviving eye, and a corresponding shrinkage of those belonging to the removed eye. Monocular lid closures were made in one monkey at 2 weeks of age, for a period of 18 months, in another at 3 weeks for 7 months, and in a third at 2 days for 7 weeks. Recordings from the lateral geniculate body showed brisk activity from the deprived layers and the usual abrupt eye transitions at the boundaries between layers. Cell shrinkage in the deprived layers was moderate - far less severe than that following eye removal, more marked ipsilaterally than contralaterally, and more marked the earlier the onset of the deprivation. In autoradiographs following eye injection with a mixture of tritiated proline and tritiated fucose the labelling of terminals was confined to geniculate layers corresponding to the injected eye. Animals in which the open eye was injected showed no hint of invasion of terminals into the deprived layers. Similarly in the tectum there was no indication of any change in the distribution of terminals from the two eyes. The autoradiographs of the lateral geniculates provide evidence for several previously undescribed zones of optic nerve terminals, in addition to the six classical subdivisions. In the cortex four independent methods, physiological recording, transneuronal autoradiography, Nauta degeneration, and a reduced-silver stain for normal fibres, all agreed in showing a marked shrinkage of deprived-eye columns and expansion of those of the normal eye, with preservation of the normal repeat distance (left-eye column plus right-eye column). There was a suggestion that changes in the columns were more severe when closure was done at 2 weeks as opposed to 3, and more severe on the side ipsilateral to the closure. The temporal crescent representation in layer IVC of the hemisphere opposite the closure showed no obvious adverse effects. Cell size and packing density in the shrunken IVth layer columns seemed normal. In one normal monkey in which an eye was injected the day after birth, autoradiographs of the cortex at 1 week indicated only a very mild degree of segregation of input from the two eyes; this had the form of parallel bands. Tangential recordings in layer IVC at 8 days likewise showed considerable overlap of inputs, though some segregation was clearly present; at 30 days the segregation was much more advanced. These preliminary experiments thus suggest that the layer IVC columns are not fully developed until some weeks after birth. Two alternate possibilities are considered to account for the changes in the ocular dominance columns in layer IVC following deprivation. If one ignores the above evidence in the newborn and assumes that the columns are fully formed at birth, then after eye closure the afferents from the normal eye must extend their territory, invading the deprived-eye columns perhaps by a process of sprouting of terminals. On the other hand, if at birth the fibres from each eye indeed occupy all of lay IVC, retracting to form the columns only during the first 6 weeks or so, perhaps by a process of competition, then closure of one eye may result in a competitive disadvantage of the terminals from that eye, so that they retract more than they would normally. This second possibility has the advantage that it explains the critical period for deprivation effects in the layer IV columns, this being the time after birth during which retraction is completed. It would also explain the greater severity of the changes in the earlier closures, and would provide an interpretation of both cortical and geniculate effects in terms of of competition of terminals in layer IVC for territory on postsynaptic cells.

1,567 citations

Journal ArticleDOI
TL;DR: In these experiments the use of monocular deprivation made it possible to compare adjacent geniculate layers, and also to compare the two eyes in their ability to influence cortical cells, so that each animal acted, in a sense, as its own control.
Abstract: IN THE NORMAL CAT OR KITTEN about four-fifths of cells in the striate cortex can be driven by both eyes (3, 4). If, however, one eye of a newborn kitten is sewn shut and the visual cortex recorded from 3 months later, only a small fraction of cells can be driven from the deprived eye (8) . In contrast, many cells in the latera .I geniculate are driven normally from the d ,eprived eye (7 ), suggesting that the abnormality occurs somewhere between geniculate cells and cortex. Since clear receptive-field orientations and directional preferences to movement are seen in cortical cells of newborn visually inexperienced kittens, the deprivation effects presumably represent some sort of disruption of innately determined connections, rather than a failure of postnatal development related to lack of experience. In these experiments the use of monocular deprivation made it possible to compare adjacent geniculate layers, and also to compare the two eyes in their ability to influence cortical cells, so that each animal acted, in a sense, as its own control. The results led us to expect that depriving both eyes for similar periods would lead to an almost total unresponsiveness of cortical cells to stimulation of either eye. That should be so, provided the effects of depriving one eye were independent of whether or not the other eye was simultaneously deprived. It seemed worthwhile to test such an assumption, since any interdependence of the two pathways would be of considerable interest. We accordingly raised kittens with both eyes covered by lid suture, and recorded from the striate cortex when the animals had reached an age of 23-43 months.

1,520 citations

Journal ArticleDOI
TL;DR: Single-unit recordings in the optic tract and lateral geniculate body of kittens in which one eye had been deprived of vision are described, and an anatomical examination of the visual pathways in these animals are examined.
Abstract: THEIMPORTANCEOFNORMALSENSORYSTIMULATION inthedevelopment and maintenance of the nervous system is now generally recognized. In the visual system this problem has usually been approached by examining the effects of sensory deprivation on structure and behavior (see reviews by Hebb (12) and Riesen (28)). An obvious way of extending this work would be to examine electrophysiologically the functional effects of visual deprivation, but such experiments require some knowledge of normal function. During the last 10 years single-cell responses have been examined and receptive-field arrangements compared at several levels in the cat’s visual pathway: in the retina (Zl), the lateral geniculate body (18), and the visual cortex (17, 19). This information provides the necessary background for a study of the immature and the stimulus-deprived visual system. The results of a physiological and anatomical study of the visual pathways in normal. and visually deprived kittens will be presented in a series of three papers. In the present paper we describe single-unit recordings in the optic tract and lateral geniculate body of kittens in which one eye had been deprived of vision, and an anatomical examination of the visual pathways in these animals. The second paper (20) will describe single-unit recordings in the striate cortex of newborn kittens. The final paper (32) will deal with responses of cells in the visual cortex of visually deprived animals.

1,238 citations

Journal ArticleDOI
TL;DR: The sites of reactivity of both parts of the respiratory chain have implications for the chemiosomotic hypothesis of Mitchell who suggests a mechanism of energy conservation during electron transport in the respiratory Chain of the mitochondrion.
Abstract: A new method for demonstrating cytochrome oxidase activity, based upon the oxidative polymerization of 3,3'-diaminobenzidine (DAB) to an osmiophilic reaction product, has improved the localization of this enzyme over methods based upon the Nadi reaction, in both the light and electron microscopes. The reaction product occurs in nondroplet form, which more accurately delineates the localization of cytochrome oxidase in mitochondria of heart, liver, and kidney. In electron microscopic preparations the excess reaction product is found to overflow into the intracristate spaces and into the outer compartment between inner and outer limiting mitochondrial membranes. This finding suggests that the enzymatic activity of cytochrome c is located on the inner surface of the intracristate space which is the outer surface of the inner mitochondrial membrane. Succinic dehydrogenase activity has also been located at this site by using an osmiophilic ditetrazolium salt, TC-NBT. Considered together, the sites of reactivity of both parts of the respiratory chain have implications for the chemiosomotic hypothesis of Mitchell who suggests a mechanism of energy conservation during electron transport in the respiratory chain of the mitochondrion.

933 citations