scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Channel Coding Rate in the Finite Blocklength Regime

01 May 2010-IEEE Transactions on Information Theory (IEEE)-Vol. 56, Iss: 5, pp 2307-2359
TL;DR: It is shown analytically that the maximal rate achievable with error probability ¿ isclosely approximated by C - ¿(V/n) Q-1(¿) where C is the capacity, V is a characteristic of the channel referred to as channel dispersion, and Q is the complementary Gaussian cumulative distribution function.
Abstract: This paper investigates the maximal channel coding rate achievable at a given blocklength and error probability. For general classes of channels new achievability and converse bounds are given, which are tighter than existing bounds for wide ranges of parameters of interest, and lead to tight approximations of the maximal achievable rate for blocklengths n as short as 100. It is also shown analytically that the maximal rate achievable with error probability ? isclosely approximated by C - ?(V/n) Q-1(?) where C is the capacity, V is a characteristic of the channel referred to as channel dispersion , and Q is the complementary Gaussian cumulative distribution function.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

2,415 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a survey of self-interference mitigation techniques for in-band full-duplex (IBFD) wireless systems and discuss the challenges and opportunities in the design and analysis of IBFD wireless systems.
Abstract: In-band full-duplex (IBFD) operation has emerged as an attractive solution for increasing the throughput of wireless communication systems and networks. With IBFD, a wireless terminal is allowed to transmit and receive simultaneously in the same frequency band. This tutorial paper reviews the main concepts of IBFD wireless. One of the biggest practical impediments to IBFD operation is the presence of self-interference, i.e., the interference that the modem's transmitter causes to its own receiver. This tutorial surveys a wide range of IBFD self-interference mitigation techniques. Also discussed are numerous other research challenges and opportunities in the design and analysis of IBFD wireless systems.

1,752 citations

Posted Content
TL;DR: This tutorial surveys a wide range of IBFD self-interference mitigation techniques and discusses numerous other research challenges and opportunities in the design and analysis of IB FD wireless systems.
Abstract: In-band full-duplex (IBFD) operation has emerged as an attractive solution for increasing the throughput of wireless communication systems and networks. With IBFD, a wireless terminal is allowed to transmit and receive simultaneously in the same frequency band. This tutorial paper reviews the main concepts of IBFD wireless. Because one the biggest practical impediments to IBFD operation is the presence of self-interference, i.e., the interference caused by an IBFD node's own transmissions to its desired receptions, this tutorial surveys a wide range of IBFD self-interference mitigation techniques. Also discussed are numerous other research challenges and opportunities in the design and analysis of IBFD wireless systems.

1,549 citations


Additional excerpts

  • ...14...

    [...]

Book
03 Jan 2018
TL;DR: This monograph summarizes many years of research insights in a clear and self-contained way and providest the reader with the necessary knowledge and mathematical toolsto carry out independent research in this area.
Abstract: Massive multiple-input multiple-output MIMO is one of themost promising technologies for the next generation of wirelesscommunication networks because it has the potential to providegame-changing improvements in spectral efficiency SE and energyefficiency EE. This monograph summarizes many years ofresearch insights in a clear and self-contained way and providesthe reader with the necessary knowledge and mathematical toolsto carry out independent research in this area. Starting froma rigorous definition of Massive MIMO, the monograph coversthe important aspects of channel estimation, SE, EE, hardwareefficiency HE, and various practical deployment considerations.From the beginning, a very general, yet tractable, canonical systemmodel with spatial channel correlation is introduced. This modelis used to realistically assess the SE and EE, and is later extendedto also include the impact of hardware impairments. Owing tothis rigorous modeling approach, a lot of classic "wisdom" aboutMassive MIMO, based on too simplistic system models, is shownto be questionable.

1,352 citations

Proceedings ArticleDOI
03 Oct 2011
TL;DR: It appears that the proposed list decoder bridges the gap between successive-cancellation and maximum-likelihood decoding of polar codes, and devise an efficient, numerically stable, implementation taking only O(L · n log n) time and O( L · n) space.
Abstract: We describe a successive-cancellation list decoder for polar codes, which is a generalization of the classic successive-cancellation decoder of Arikan. In the proposed list decoder, up to L decoding paths are considered concurrently at each decoding stage. Simulation results show that the resulting performance is very close to that of a maximum-likelihood decoder, even for moderate values of L. Thus it appears that the proposed list decoder bridges the gap between successive-cancellation and maximum-likelihood decoding of polar codes. The specific list-decoding algorithm that achieves this performance doubles the number of decoding paths at each decoding step, and then uses a pruning procedure to discard all but the L “best” paths. In order to implement this algorithm, we introduce a natural pruning criterion that can be easily evaluated. Nevertheless, straightforward implementation still requires O(L · n2) time, which is in stark contrast with the O(n log n) complexity of the original successive-cancellation decoder. We utilize the structure of polar codes to overcome this problem. Specifically, we devise an efficient, numerically stable, implementation taking only O(L · n log n) time and O(L · n) space.

1,338 citations

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

01 Jan 1950
TL;DR: A First Course in Probability (8th ed.) by S. Ross is a lively text that covers the basic ideas of probability theory including those needed in statistics.
Abstract: Office hours: MWF, immediately after class or early afternoon (time TBA). We will cover the mathematical foundations of probability theory. The basic terminology and concepts of probability theory include: random experiments, sample or outcome spaces (discrete and continuous case), events and their algebra, probability measures, conditional probability A First Course in Probability (8th ed.) by S. Ross. This is a lively text that covers the basic ideas of probability theory including those needed in statistics. Theoretical concepts are introduced via interesting concrete examples. In 394 I will begin my lectures with the basics of probability theory in Chapter 2. However, your first assignment is to review Chapter 1, which treats elementary counting methods. They are used in applications in Chapter 2. I expect to cover Chapters 2-5 plus portions of 6 and 7. You are encouraged to read ahead. In lectures I will not be able to cover every topic and example in Ross, and conversely, I may cover some topics/examples in lectures that are not treated in Ross. You will be responsible for all material in my lectures, assigned reading, and homework, including supplementary handouts if any.

10,221 citations