scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Characterisation of copper oxide nanoparticles for antimicrobial applications

TL;DR: The ability of CuO nanoparticles to reduce bacterial populations to zero was enhanced in the presence of sub-MBC concentrations of silver nanoparticles, suggesting release of ions may be required for optimum killing.
About: This article is published in International Journal of Antimicrobial Agents.The article was published on 2009-06-01. It has received 1273 citations till now. The article focuses on the topics: Silver nanoparticle & Copper oxide.
Citations
More filters
Journal ArticleDOI
01 Nov 2011
TL;DR: Several applications of nanomaterials in food packaging and food safety are reviewed, including polymer/clay nanocomposites as high barrier packaging materials, silver nanoparticles as potent antimicrobial agents, and nanosensors and nanomMaterial-based assays for the detection of food-relevant analytes.
Abstract: In this article, several applications of nanomaterials in food packaging and food safety are reviewed, including: polymer/clay nanocomposites as high barrier packaging materials, silver nanoparticles as potent antimicrobial agents, and nanosensors and nanomaterial-based assays for the detection of food-relevant analytes (gasses, small organic molecules and food-borne pathogens). In addition to covering the technical aspects of these topics, the current commercial status and understanding of health implications of these technologies are also discussed. These applications were chosen because they do not involve direct addition of nanoparticles to consumed foods, and thus are more likely to be marketed to the public in the short term.

1,568 citations

Journal ArticleDOI
TL;DR: This review summarizes emerging efforts in combating against infectious diseases, particularly using antimicrobial NPs and antibiotics delivery systems as new tools to tackle the current challenges in treating infectious diseases.

1,493 citations

Journal ArticleDOI
TL;DR: Proposed mechanisms of antibacterial action of different metal NPs include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction.
Abstract: As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed.

1,318 citations


Additional excerpts

  • ...aureus (MRSA) 252 4 h MBC = 1000 μg/mL [49]...

    [...]

Journal ArticleDOI
18 May 2012-ACS Nano
TL;DR: A linear correlation was found between the average concentration of total ROS and the bacterial survival rates under UV irradiation, and this correlation quantitatively linked ROS production capability of NPs to their antibacterial activity as well as shed light on the applications of metal-oxide NPs as potential antibacterial agents.
Abstract: Oxidative stress induced by reactive oxygen species (ROS) is one of the most important antibacterial mechanisms of engineered nanoparticles (NPs). To elucidate the ROS generation mechanisms, we investigated the ROS production kinetics of seven selected metal-oxide NPs and their bulk counterparts under UV irradiation (365 nm). The results show that different metal oxides had distinct photogenerated ROS kinetics. Particularly, TiO2 nanoparticles and ZnO nanoparticles generated three types of ROS (superoxide radical, hydroxyl radical, and singlet oxygen), whereas other metal oxides generated only one or two types or did not generate any type of ROS. Moreover, NPs yielded more ROS than their bulk counterparts likely due to larger surface areas of NPs providing more absorption sites for UV irradiation. The ROS generation mechanism was elucidated by comparing the electronic structures (i.e., band edge energy levels) of the metal oxides with the redox potentials of various ROS generation, which correctly interpr...

1,209 citations

Journal ArticleDOI
TL;DR: The activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents are discussed.
Abstract: Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

613 citations


Cites background from "Characterisation of copper oxide na..."

  • ...Hence, a comparatively higher concentration of nanoparticles is needed to achieve the same results [87]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Abstract: Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. The study of bactericidal nanomaterials is particularly timely considering the recent increase of new resistant strains of bacteria to the most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work studies the effect of silver nanoparticles in the range of 1-100 nm on Gram-negative bacteria using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). Our results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.

5,609 citations

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

5,309 citations


"Characterisation of copper oxide na..." refers background in this paper

  • ...Indirect effects through changes in the surrounding charge environment may also impact on the effectiveness of nanoparticulate metals against microorganisms [2]....

    [...]

  • ...The antimicrobial properties of both silver [2] and copper anoparticles [3] have been previously reported, and both of these ave been coated onto or incorporated into various materials 4]....

    [...]

  • ...Likewise, Ag nanoparticles have been shown to attach to the microbial cell surface and penetrate inside, where intracellular targets, including respiratory enzymes, are disrupted [2]....

    [...]

Journal ArticleDOI
15 Jun 1995-Nature
TL;DR: In this article, the authors examined the possibility that this effect is related to dynamical two-dimensional spin correlations, incommensurate with the crystal lattice, that have been observed in La2-SrxCuO4 by neutron scattering.
Abstract: ONE of the long-standing mysteries associated with the high-temperature copper oxide superconductors concerns the anomalous suppression1 of superconductivity in La2-xBaxCuO4 (and certain related compounds) when the hole concentration x is near . Here we examine the possibility that this effect is related to dynamical two-dimensional spin correlations, incommensurate with the crystal lattice, that have been observed in La2-xSrxCuO4 by neutron scattering2–4. A possible explanation for the incommensurability involves a coupled, dynamical modulation of spin and charge in which antiferromagnetic 'stripes' of copper spins are separated by periodically spaced domain walls to which the holes segregate5–9. An ordered stripe phase of this type has recently been observed in hole-doped La2NiO4 (refs 10–12). We present evidence from neutron diffraction that in the copper oxide material La1.6-xNd0.4SrxCuO4, with x = 0.12, a static analogue of the dynamical stripe phase is present, and is associated with an anomalous suppression of superconductivity13,14. Our results thus provide an explanation of the ' ' conundrum, and also support the suggestion15 that spatial modulations of spin and charge density are related to superconductivity in the copper oxides.

2,449 citations


"Characterisation of copper oxide na..." refers background in this paper

  • ...[6] Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S....

    [...]

  • ...CuO has attracted articular attention because it is the simplest member of the amily of copper compounds and exhibits a range of potentially seful physical properties such as high temperature superconducivity, electron correlation effects and spin dynamics [5,6]....

    [...]

Journal ArticleDOI
04 Jul 2002-Langmuir
TL;DR: In this paper, reactive magnesium oxide nanoparticles and halogen (Cl2, Br2) adducts of these MgO particles were allowed to contact certain bacteria and spore cells, which yield insight into the biocidal action of these nanoscale materials.
Abstract: Reactive magnesium oxide nanoparticles and halogen (Cl2, Br2) adducts of these MgO particles were allowed to contact certain bacteria and spore cells. Bacteriological test data, atomic force microscopy (AFM) images, and electron microscopy (TEM) images are provided, which yield insight into the biocidal action of these nanoscale materials. The tests show that these materials are very effective against Gram-positive and Gram-negative bacteria as well as spores. ζ-Potential measurements show an attractive interaction between the MgO nanoparticles and bacteria and spore cells, which is confirmed by confocal microscopy images. The AFM studies illustrate considerable changes in the cell membranes upon treatment, resulting in the death of the cells. TEM micrographs confirm these results and supply additional information about the processes inside the cells. Overall, the results presented illustrate that dry powder nanoparticulate formulations as well as water slurries are effective. It is proposed that abrasive...

1,679 citations

01 Jan 2010
TL;DR: In this article, the bactericidal effect of colloid silver nanoparticles in the range of 7-50 nm on Gram-negative bacteria and Gram-positive bacteria was studied and the effect of the colloid was evaluated.
Abstract: Nanotechnology is expected to open new avenues to fight and prevent diseases using atomic scale tailoring of materials. Rapid development of bio-nanotechnology and material research leads to a new way in combating bacteria and searching specific properties of nanomaterials. Presently, the increased resistance of bacteria against strong antibiotics offers to nanomaterial research a chance to help alleviating this problem. The present work studies the bactericidal effect of silver nanoparticles in the range of 7-50 nm on Gram-negative bacteria and Gram-positive bacteria. The colloid silver nanoparticles was

1,017 citations


"Characterisation of copper oxide na..." refers background in this paper

  • ...Such characteristics should allow them to interact closely ith bacterial membranes, rather than the effect being solely ue to the release of metal ions [1]....

    [...]

  • ...[1] Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT....

    [...]