scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Characterization of Bacterial Communities in Feces from Healthy Elderly Volunteers and Hospitalized Elderly Patients by Using Real-Time PCR and Effects of Antibiotic Treatment on the Fecal Microbiota

01 Jun 2004-Applied and Environmental Microbiology (American Society for Microbiology)-Vol. 70, Iss: 6, pp 3575-3581
TL;DR: The numbers of enterobacteria increased in the hospitalized patients who did not receive antibiotics, and due to profound changes in fecal microbiotas during antibiotic treatment, the opportunistic species Enterococcus faecalis proliferated.
Abstract: Fecal bacteria were studied in healthy elderly volunteers (age, 63 to 90 years; n = 35) living in the local community, elderly hospitalized patients (age, 66 to 103; n = 38), and elderly hospitalized patients receiving antibiotic treatment (age, 65 to 100; n = 21). Group- and species-specific primer sets targeting 16S rRNA genes were used to quantitate intestinal bacteria by using DNA extracted from feces and real-time PCR. The principal difference between healthy elderly volunteers and both patient cohorts was a marked reduction in the Bacteroides-Prevotella group following hospitalization. Reductions in bifidobacteria, Desulfovibrio spp., Clostridium clostridiiforme, and Faecalibacterium prausnitzii were also found in the hospitalized patients. However, total 16S rRNA gene copy numbers (per gram of wet weight of feces) were generally lower in the stool samples of the two groups of hospitalized patients compared to the number in the stool samples of elderly volunteers living in the community, so the relative abundance (percentage of the group- and species-specific rRNA gene copies in relation to total bacterial rRNA gene copies) of bifidobacteria, Desulfovibrio spp., C. clostridiiforme, and F. prausnitzii did not change. Antibiotic treatment resulted in further reductions in the numbers of bacteria and their prevalence and, in some patients, complete elimination of certain bacterial communities. Conversely, the numbers of enterobacteria increased in the hospitalized patients who did not receive antibiotics, and due to profound changes in fecal microbiotas during antibiotic treatment, the opportunistic species Enterococcus faecalis proliferated.
Citations
More filters
Journal ArticleDOI
05 Feb 2010-PLOS ONE
TL;DR: The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota and the level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota.
Abstract: Background: Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control Methods and Findings: The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2 The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N=20) by tag-encoded amplicon pyrosequencing of the V4 region of the 16S rRNA gene The proportions of phylum Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to the control group (P=003) Furthermore, the ratios of Bacteroidetes to Firmicutes as well as the ratios of Bacteroides-Prevotella group to C coccoides-E rectale group correlated positively and significantly with plasma glucose concentration (P=004) but not with BMIs Similarly, class Betaproteobacteria was highly enriched in diabetic compared to non-diabetic persons (P=002) and positively correlated with plasma glucose (P=004) Conclusions: The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota

2,345 citations

Journal ArticleDOI
TL;DR: Ciprofloxacin treatment influenced the abundance of about a third of the bacterial taxa in the gut, decreasing the taxonomic richness, diversity, and evenness of the community, and support the hypothesis of functional redundancy in the human gut microbiota.
Abstract: The human intestinal microbiota is essential to the health of the host and plays a role in nutrition, development, metabolism, pathogen resistance, and regulation of immune responses. Antibiotics may disrupt these coevolved interactions, leading to acute or chronic disease in some individuals. Our understanding of antibiotic-associated disturbance of the microbiota has been limited by the poor sensitivity, inadequate resolution, and significant cost of current research methods. The use of pyrosequencing technology to generate large numbers of 16S rDNA sequence tags circumvents these limitations and has been shown to reveal previously unexplored aspects of the “rare biosphere.” We investigated the distal gut bacterial communities of three healthy humans before and after treatment with ciprofloxacin, obtaining more than 7,000 full-length rRNA sequences and over 900,000 pyrosequencing reads from two hypervariable regions of the rRNA gene. A companion paper in PLoS Genetics (see Huse et al., doi: 10.1371/journal.pgen.1000255) shows that the taxonomic information obtained with these methods is concordant. Pyrosequencing of the V6 and V3 variable regions identified 3,300–5,700 taxa that collectively accounted for over 99% of the variable region sequence tags that could be obtained from these samples. Ciprofloxacin treatment influenced the abundance of about a third of the bacterial taxa in the gut, decreasing the taxonomic richness, diversity, and evenness of the community. However, the magnitude of this effect varied among individuals, and some taxa showed interindividual variation in the response to ciprofloxacin. While differences of community composition between individuals were the largest source of variability between samples, we found that two unrelated individuals shared a surprising degree of community similarity. In all three individuals, the taxonomic composition of the community closely resembled its pretreatment state by 4 weeks after the end of treatment, but several taxa failed to recover within 6 months. These pervasive effects of ciprofloxacin on community composition contrast with the reports by participants of normal intestinal function and with prior assumptions of only modest effects of ciprofloxacin on the intestinal microbiota. These observations support the hypothesis of functional redundancy in the human gut microbiota. The rapid return to the pretreatment community composition is indicative of factors promoting community resilience, the nature of which deserves future investigation.

2,181 citations

Journal ArticleDOI
TL;DR: Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Abstract: The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within ...

1,775 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the fecal microbiota composition evolves throughout life, from early childhood to old age, and that the ratio of Firmicutes to Bacteroidetes evolves during different life stages.
Abstract: In humans, the intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Applying current molecular methods is necessary to surmount the limitations of classical culturing techniques in order to obtain an accurate description of the microbiota composition. Here we report on the comparative assessment of human fecal microbiota from three age-groups: infants, adults and the elderly. We demonstrate that the human intestinal microbiota undergoes maturation from birth to adulthood and is further altered with ageing. The counts of major bacterial groups Clostridium leptum, Clostridium coccoides, Bacteroidetes, Bifidobacterium, Lactobacillus and Escherichia coli were assessed by quantitative PCR (qPCR). By comparing species diversity profiles, we observed age-related changes in the human fecal microbiota. The microbiota of infants was generally characterized by low levels of total bacteria. C. leptum and C. coccoides species were highly represented in the microbiota of infants, while elderly subjects exhibited high levels of E. coli and Bacteroidetes. We observed that the ratio of Firmicutes to Bacteroidetes evolves during different life stages. For infants, adults and elderly individuals we measured ratios of 0.4, 10.9 and 0.6, respectively. In this work we have confirmed that qPCR is a powerful technique in studying the diverse and complex fecal microbiota. Our work demonstrates that the fecal microbiota composition evolves throughout life, from early childhood to old age.

1,328 citations

Journal ArticleDOI
17 May 2010-PLOS ONE
TL;DR: Evidence is provided for the fact that the ageing process deeply affects the structure of the human gut microbiota, as well as its homeostasis with the host's immune system, because of its crucial role in the host physiology and health status.
Abstract: Background: Age-related physiological changes in the gastrointestinal tract, as well as modifications in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbiota, resulting in a greater susceptibility to infections. Methodology/Principal Findings: By using the Human Intestinal Tract Chip (HITChip) and quantitative PCR of 16S rRNA genes of Bacteria and Archaea, we explored the age-related differences in the gut microbiota composition among young adults, elderly, and centenarians, i.e subjects who reached the extreme limits of the human lifespan, living for over 100 years. We observed that the microbial composition and diversity of the gut ecosystem of young adults and seventy-years old people is highly similar but differs significantly from that of the centenarians. After 100 years of symbiotic association with the human host, the microbiota is characterized by a rearrangement in the Firmicutes population and an enrichment in facultative anaerobes, notably pathobionts. The presence of such a compromised microbiota in the centenarians is associated with an increased inflammatory status, also known as inflammageing, as determined by a range of peripheral blood inflammatory markers. This may be explained by a remodelling of the centenarians’ microbiota, with a marked decrease in Faecalibacterium prauznitzii and relatives, symbiotic species with reported anti-inflammatory properties. As signature bacteria of the long life we identified specifically Eubacterium limosum and relatives that were more than ten-fold increased in the centenarians. Conclusions/Significance: We provide evidence for the fact that the ageing process deeply affects the structure of the human gut microbiota, as well as its homeostasis with the host’s immune system. Because of its crucial role in the host physiology and health status, age-related differences in the gut microbiota composition may be related to the progression of diseases and frailty in the elderly population.

1,180 citations

References
More filters
Book
01 May 1989
TL;DR: BCL3 and Sheehy cite Bergey's manual of determinative bacteriology of which systematic bacteriology, first edition, is an expansion.
Abstract: BCL3 and Sheehy cite Bergey's manual of determinative bacteriology of which systematic bacteriology, first edition, is an expansion. With v.4 the set is complete. The volumes cover, roughly, v.1, the Gram-negatives except those in v.3 ($87.95); v.2, the Gram-positives less actinomycetes ($71.95); v.

16,172 citations

Journal ArticleDOI
TL;DR: The design and evaluation of a set of universal primers and probe for the amplification of 16S rDNA from the Domain Bacteria to estimate total bacterial load by real-time PCR is reported, and the number of anaerobic bacteria estimated by the universal probe and primers set in carious dentine was 40-fold greater than the totalacterial load detected by culture methods, demonstrating the utility of real- time PCR in the analysis of this environment.
Abstract: The design and evaluation of a set of universal primers and probe for the amplification of 16S rDNA from the Domain Bacteria to estimate total bacterial load by real-time PCR is reported. Broad specificity of the universal detection system was confirmed by testing DNA isolated from 34 bacterial species encompassing most of the groups of bacteria outlined in Bergey’s Manual of Determinative Bacteriology. However, the nature of the chromosomal DNA used as a standard was critical. A DNA standard representing those bacteria most likely to predominate in a given habitat was important for a more accurate determination of total bacterial load due to variations in 16S rDNA copy number and the effect of generation time of the bacteria on this number, since rapid growth could result in multiple replication forks and hence, in effect, more than one copy of portions of the chromosome. The validity of applying these caveats to estimating bacterial load was confirmed by enumerating the number of bacteria in an artificial sample mixed in vitro and in clinical carious dentine samples. Taking these parameters into account, the number of anaerobic bacteria estimated by the universal probe and primers set in carious dentine was 40-fold greater than the total bacterial load detected by culture methods, demonstrating the utility of real-time PCR in the analysis of this environment.

1,802 citations

Journal ArticleDOI
TL;DR: The Ribosomal Database Project-II (RDP-II) pro-vides data, tools and services related to ribosomal RNA sequences to the research community and debuts a new regularly updated alignment of over 50 000 annotated (eu)bacterial sequences.
Abstract: The Ribosomal Database Project-II (RDP-II) pro-vides data, tools and services related to ribosomal RNA sequences to the research community. Through its website (http://rdp.cme.msu.edu), RDP-II offers aligned and annotated rRNA sequence data, analysis services, and phylogenetic inferences (trees) derived from these data. RDP-II release 8.1 contains 16 277 prokaryotic, 5201 eukaryotic, and 1503 mitochondrial small subunit rRNA sequences in aligned and annotated format. The current public beta release of 9.0 debuts a new regularly updated alignment of over 50 000 annotated (eu)bacterial sequences. New analysis services include a sequence search and selection tool (Hierarchy Browser) and a phylogenetic tree building and visualization tool (Phylip Interface). A new interactive tutorial guides users through the basics of rRNA sequence analysis. Other services include probe checking, phylogenetic placement of user sequences, screening of users' sequences for chimeric rRNA sequences, automated alignment, production of similarity matrices, and services to plan and analyze terminal restriction fragment polymorphism (T-RFLP) experiments. The RDP-II email address for questions or comments is rdpstaff@msu.edu.

1,466 citations


"Characterization of Bacterial Commu..." refers methods in this paper

  • ...The specificities of the oligonucleotide sequences for the target organisms were checked with an online tool provided by the Ribosomal Database Project ( 8 )....

    [...]

Journal ArticleDOI
TL;DR: The majority of generated rDNA sequences did not correspond to known organisms and clearly derived from hitherto unknown species within this human gut microflora, including Clostridium coccoides and Eubacterium rectale.
Abstract: The human intestinal tract harbors a complex microbial ecosystem which plays a key role in nutrition and health. Although this microbiota has been studied in great detail by culture techniques, microscopic counts on human feces suggest that 60 to 80% of the observable bacteria cannot be cultivated. Using comparative analysis of cloned 16S rRNA gene (rDNA) sequences, we have investigated the bacterial diversity (both cultivated and noncultivated bacteria) within an adult-male fecal sample. The 284 clones obtained from 10-cycle PCR were classified into 82 molecular species (at least 98% similarity). Three phylogenetic groups contained 95% of the clones: the Bacteroides group, the Clostridium coccoides group, and the Clostridium leptum subgroup. The remaining clones were distributed among a variety of phylogenetic clusters. Only 24% of the molecular species recovered corresponded to described organisms (those whose sequences were available in public databases), and all of these were established members of the dominant human fecal flora (e.g., Bacteroides thetaiotaomicron, Fusobacterium prausnitzii, and Eubacterium rectale). However, the majority of generated rDNA sequences (76%) did not correspond to known organisms and clearly derived from hitherto unknown species within this human gut microflora.

1,464 citations


"Characterization of Bacterial Commu..." refers background or methods in this paper

  • ...Molecular techniques based on the analysis of the 16S rRNA or rRNA genes are being increasingly used, and a variety of techniques such random cloning and sequencing (43), denaturing gel electrophoresis (46), fluorescence in situ hybridization (23), and dot blot hybridization (10) have been developed....

    [...]

  • ...Most of the studies on the human gut bacteria have used cultivation techniques to monitor bacterial populations, although it has been reported that less then 25% of the intestinal species are cultivable (43)....

    [...]

Journal ArticleDOI
TL;DR: The results indicate that the combination of cloning and TGGE analysis of 16S rDNA amplicons is a reliable approach to monitoring different microbial communities in feces.
Abstract: The diversity of the predominant bacteria in the human gastrointestinal tract was studied by using 16S rRNA-based approaches. PCR amplicons of the V6 to V8 regions of fecal 16S rRNA and ribosomal DNA (rDNA) were analyzed by temperature gradient gel electrophoresis (TGGE). TGGE of fecal 16S rDNA amplicons from 16 individuals showed different profiles, with some bands in common. Fecal samples from two individuals were monitored over time and showed remarkably stable profiles over a period of at least 6 months. TGGE profiles derived from 16S rRNA and rDNA amplicons showed similar banding patterns. However, the intensities of bands with similar mobilities differed in some cases, indicating a different contribution to the total active fraction of the prominent fecal bacteria. Most 16S rRNA amplicons in the TGGE pattern of one subject were identified by cloning and sequence analysis. Forty-five of the 78 clones matched 15 bands, and 33 clones did not match any visible band in the TGGE pattern. Nested PCR of amplified 16S rDNA indicated preferential amplification of a sequence corresponding to 12 of the 33 nonmatching clones with similar mobilities in TGGE. The sequences matching 15 bands in the TGGE pattern showed 91.5 to 98.7% homology to sequences derived from different Clostridium clusters. Most of these were related to strains derived from the human intestine. The results indicate that the combination of cloning and TGGE analysis of 16S rDNA amplicons is a reliable approach to monitoring different microbial communities in feces.

1,359 citations


"Characterization of Bacterial Commu..." refers methods in this paper

  • ...Molecular techniques based on the analysis of the 16S rRNA or rRNA genes are being increasingly used, and a variety of techniques such random cloning and sequencing (43), denaturing gel electrophoresis (46), fluorescence in situ hybridization (23), and dot blot hybridization (10) have been developed....

    [...]

Related Papers (5)