scispace - formally typeset
Search or ask a question
Book

Characterization of Signals From Multiscale Edges

11 Aug 2011-
TL;DR: The authors describe an algorithm that reconstructs a close approximation of 1-D and 2-D signals from their multiscale edges and shows that the evolution of wavelet local maxima across scales characterize the local shape of irregular structures.
Abstract: A multiscale Canny edge detection is equivalent to finding the local maxima of a wavelet transform. The authors study the properties of multiscale edges through the wavelet theory. For pattern recognition, one often needs to discriminate different types of edges. They show that the evolution of wavelet local maxima across scales characterize the local shape of irregular structures. Numerical descriptors of edge types are derived. The completeness of a multiscale edge representation is also studied. The authors describe an algorithm that reconstructs a close approximation of 1-D and 2-D signals from their multiscale edges. For images, the reconstruction errors are below visual sensitivity. As an application, a compact image coding algorithm that selects important edges and compresses the image data by factors over 30 has been implemented. >

Content maybe subject to copyright    Report

Citations
More filters
Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,693 citations

Journal ArticleDOI
TL;DR: It is proven that the local maxima of the wavelet transform modulus detect the locations of irregular structures and provide numerical procedures to compute their Lipschitz exponents.
Abstract: The mathematical characterization of singularities with Lipschitz exponents is reviewed. Theorems that estimate local Lipschitz exponents of functions from the evolution across scales of their wavelet transform are reviewed. It is then proven that the local maxima of the wavelet transform modulus detect the locations of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations has a particular behavior that is studied separately. The local frequency of such oscillations is measured from the wavelet transform modulus maxima. It has been shown numerically that one- and two-dimensional signals can be reconstructed, with a good approximation, from the local maxima of their wavelet transform modulus. As an application, an algorithm is developed that removes white noises from signals by analyzing the evolution of the wavelet transform maxima across scales. In two dimensions, the wavelet transform maxima indicate the location of edges in images. >

4,064 citations

Journal ArticleDOI
TL;DR: It is shown how the proposed methodology applies to the problems of blob detection, junction detection, edge detection, ridge detection and local frequency estimation and how it can be used as a major mechanism in algorithms for automatic scale selection, which adapt the local scales of processing to the local image structure.
Abstract: The fact that objects in the world appear in different ways depending on the scale of observation has important implications if one aims at describing them. It shows that the notion of scale is of utmost importance when processing unknown measurement data by automatic methods. In their seminal works, Witkin (1983) and Koenderink (1984) proposed to approach this problem by representing image structures at different scales in a so-called scale-space representation. Traditional scale-space theory building on this work, however, does not address the problem of how to select local appropriate scales for further analysis. This article proposes a systematic methodology for dealing with this problem. A framework is presented for generating hypotheses about interesting scale levels in image data, based on a general principle stating that local extrema over scales of different combinations of γ-normalized derivatives are likely candidates to correspond to interesting structures. Specifically, it is shown how this idea can be used as a major mechanism in algorithms for automatic scale selection, which adapt the local scales of processing to the local image structure. Support for the proposed approach is given in terms of a general theoretical investigation of the behaviour of the scale selection method under rescalings of the input pattern and by integration with different types of early visual modules, including experiments on real-world and synthetic data. Support is also given by a detailed analysis of how different types of feature detectors perform when integrated with a scale selection mechanism and then applied to characteristic model patterns. Specifically, it is described in detail how the proposed methodology applies to the problems of blob detection, junction detection, edge detection, ridge detection and local frequency estimation. In many computer vision applications, the poor performance of the low-level vision modules constitutes a major bottleneck. It is argued that the inclusion of mechanisms for automatic scale selection is essential if we are to construct vision systems to automatically analyse complex unknown environments.

2,942 citations

Proceedings ArticleDOI
01 Jul 2003
TL;DR: Using generic interpolation machinery based on solving Poisson equations, a variety of novel tools are introduced for seamless editing of image regions, which permits the seamless importation of both opaque and transparent source image regions into a destination region.
Abstract: Using generic interpolation machinery based on solving Poisson equations, a variety of novel tools are introduced for seamless editing of image regions. The first set of tools permits the seamless importation of both opaque and transparent source image regions into a destination region. The second set is based on similar mathematical ideas and allows the user to modify the appearance of the image seamlessly, within a selected region. These changes can be arranged to affect the texture, the illumination, and the color of objects lying in the region, or to make tileable a rectangular selection.

2,770 citations

01 Jan 1995
TL;DR: The lifting scheme is presented, a simple construction of second generation wavelets; these are wavelets that are not necessarily translates and dilates of one fixed function, and can be adapted to intervals, domains, surfaces, weights, and irregular samples.
Abstract: We present the lifting scheme, a simple construction of second generation wavelets; these are wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, in-place calculation of the wavelet transform. Several examples are included.

2,163 citations

References
More filters
Journal ArticleDOI
TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Abstract: This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussian-smoothed image. We extend this simple detector using operators of several widths to cope with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge.

28,073 citations

Book
01 May 1992
TL;DR: This paper presents a meta-analyses of the wavelet transforms of Coxeter’s inequality and its applications to multiresolutional analysis and orthonormal bases.
Abstract: Introduction Preliminaries and notation The what, why, and how of wavelets The continuous wavelet transform Discrete wavelet transforms: Frames Time-frequency density and orthonormal bases Orthonormal bases of wavelets and multiresolutional analysis Orthonormal bases of compactly supported wavelets More about the regularity of compactly supported wavelets Symmetry for compactly supported wavelet bases Characterization of functional spaces by means of wavelets Generalizations and tricks for orthonormal wavelet bases References Indexes.

16,073 citations

Journal ArticleDOI
TL;DR: In this article, the regularity of compactly supported wavelets and symmetry of wavelet bases are discussed. But the authors focus on the orthonormal bases of wavelets, rather than the continuous wavelet transform.
Abstract: Introduction Preliminaries and notation The what, why, and how of wavelets The continuous wavelet transform Discrete wavelet transforms: Frames Time-frequency density and orthonormal bases Orthonormal bases of wavelets and multiresolutional analysis Orthonormal bases of compactly supported wavelets More about the regularity of compactly supported wavelets Symmetry for compactly supported wavelet bases Characterization of functional spaces by means of wavelets Generalizations and tricks for orthonormal wavelet bases References Indexes.

14,157 citations

Journal ArticleDOI
TL;DR: The theory of edge detection explains several basic psychophysical findings, and the operation of forming oriented zero-crossing segments from the output of centre-surround ∇2G filters acting on the image forms the basis for a physiological model of simple cells.
Abstract: A theory of edge detection is presented. The analysis proceeds in two parts. (1) Intensity changes, which occur in a natural image over a wide range of scales, are detected separately at different scales. An appropriate filter for this purpose at a given scale is found to be the second derivative of a Gaussian, and it is shown that, provided some simple conditions are satisfied, these primary filters need not be orientation-dependent. Thus, intensity changes at a given scale are best detected by finding the zero values of delta 2G(x,y)*I(x,y) for image I, where G(x,y) is a two-dimensional Gaussian distribution and delta 2 is the Laplacian. The intensity changes thus discovered in each of the channels are then represented by oriented primitives called zero-crossing segments, and evidence is given that this representation is complete. (2) Intensity changes in images arise from surface discontinuities or from reflectance or illumination boundaries, and these all have the property that they are spatially. Because of this, the zero-crossing segments from the different channels are not independent, and rules are deduced for combining them into a description of the image. This description is called the raw primal sketch. The theory explains several basic psychophysical findings, and the operation of forming oriented zero-crossing segments from the output of centre-surround delta 2G filters acting on the image forms the basis for a physiological model of simple cells (see Marr & Ullman 1979).

6,893 citations

Journal ArticleDOI
TL;DR: It is proven that the local maxima of the wavelet transform modulus detect the locations of irregular structures and provide numerical procedures to compute their Lipschitz exponents.
Abstract: The mathematical characterization of singularities with Lipschitz exponents is reviewed. Theorems that estimate local Lipschitz exponents of functions from the evolution across scales of their wavelet transform are reviewed. It is then proven that the local maxima of the wavelet transform modulus detect the locations of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations has a particular behavior that is studied separately. The local frequency of such oscillations is measured from the wavelet transform modulus maxima. It has been shown numerically that one- and two-dimensional signals can be reconstructed, with a good approximation, from the local maxima of their wavelet transform modulus. As an application, an algorithm is developed that removes white noises from signals by analyzing the evolution of the wavelet transform maxima across scales. In two dimensions, the wavelet transform maxima indicate the location of edges in images. >

4,064 citations