scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity

01 Aug 1993-FEBS Journal (Blackwell Publishing Ltd)-Vol. 216, Iss: 1, pp 281-291
TL;DR: Transcription analyses of several L. lactis strains indicated that an expression product of the nisA gene, together with NisR, is required for the activation of nisinA transcription, indicating that NisI plays a role in the immunity mechanism.
Abstract: The nisin gene cluster nisABTCIPR of Lactococcus lactis, located on a 10-kbp DNA fragment of the nisin-sucrose transposon Tn5276, was characterized. This fragment was previously shown to direct nisin-A biosynthesis and to contain the nisP and nisR genes, encoding a nisin leader peptidase and a positive regulator, respectively [van der Meer, J. R., Polman, J., Beerthuyzen, M. M., Siezen, R. J., Kuipers, O. P. & de Vos, W. M. (1993) J. Bacteriol. 175, 2578–2588]. Further sequence analysis revealed the presence of four open-reading frames, nisB, nisT, nisC and nisI, downstream of the structural gene nisA. The nisT, nisC and nisI genes were subcloned and expressed individually in Escherichia coli, using the T7-RNA-polymerase system. This resulted in the production of radio-labelled proteins with sizes of 45 kDa (NisC) and 32 kDa (NisI). The nisT gene product was not detected, possibly because of protein instability. The deduced amino acid sequence of NisI contained a consensus Iipoprotein signal sequence, suggesting that this protein is a lipid-modified extracellular membrane-anchored protein. Expression of nisI in L. Iactis provided the cells with a significant level of protection against exogeneously added nisin, indicating that NisI plays a role in the immunity mechanism. In EDTA-treated E. coli cells, expression of nisI conferred up to a 170-fold increase in immunity against nisin A compared to controls. Moreover, a lactococcal strain deficient in nisin-A production, designated NZ9800, was created by gene replacement of nisA by a truncated nisA gene and was 10-fold less resistant to nisin A than the wild-type strain. A wild-type immunity level to nisin and production of nisin was obtained in strain NZ9800 harboring complementing nisA and nisZ plasmids. Transcription analyses of several L. IIactis strains indicated that an expression product of the nisA gene, together with NisR, is required for the activation of nisA transcription.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram- positive pathogenic bacteria.

2,819 citations

Journal ArticleDOI
TL;DR: The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.
Abstract: Lactic acid bacteria produce a variety of bacteriocins that have recently come under detailed investigation. The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.

2,013 citations

Journal ArticleDOI
TL;DR: The mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria are described and the functions of known surface proteins are reviewed.
Abstract: The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.

1,470 citations

Journal ArticleDOI
TL;DR: Current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics are summarized.
Abstract: Microbes produce an extraordinary array of microbial defense systems. These include classical antibiotics, metabolic by-products, lytic agents, numerous types of protein exotoxins, and bacteriocins. The abundance and diversity of this potent arsenal of weapons are clear. Less clear are their evolutionary origins and the role they play in mediating microbial interactions. The goal of this review is to explore what we know about the evolution and ecology of the most abundant and diverse family of microbial defense systems: the bacteriocins. We summarize current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics. In the latter half of this review we focus on the potential role bacteriocins may play in addressing human health concerns and the current role they serve in food preservation.

1,127 citations


Cites background from "Characterization of the nisin gene ..."

  • ...The nisin gene cluster includes genes for the prepeptide ( nisA), enzymes for modifying amino acids (nisB,nisC), cleavage of the leader peptide ( nisP), secretion ( nisT), immunity (nisI, nisFEG), and regulation of expression ( isR, nisK) (9, 21, 22, 44, 50, 66, 97)....

    [...]

  • ...Nisin transcription can be induced by the addition of nisin to the culture medium with the level of induction directly related to the level of nisin added (49, 50)....

    [...]

Journal ArticleDOI
TL;DR: The kinetics, control, and efficiency of nisin-induced expression directed by the nisA promoter region were studied in Lactococcus lactis with transcriptional and translational fusions to the gusA reporter genes.
Abstract: The kinetics, control, and efficiency of nisin-induced expression directed by the nisA promoter region were studied in Lactococcus lactis with transcriptional and translational fusions to the gusA reporter genes. In the nisin-producing L. lactis strain NZ9700, the specific beta-glucuronidase activity increased very rapidly after mid-exponential growth until the maximum level at the start of the stationary phase was reached. Expression of the gusA gene was also studied in L. lactis NZ9800, an NZ9700 derivative carrying a deletion in the structural nisA gene that abolishes nisin production, and in L. lactis NZ3900, an MG1363 derivative containing the regulatory nisRK genes integrated in the chromosome. In both strains, beta-glucuronidase activity was linearly dependent on the amount of nisin added to the medium. Without nisin, no beta-glucuronidase production was observed. To optimize translation initiation, an expression vector was constructed by fusing the gusA gene translationally to the start codon of the nisA gene. Use of the translational fusion vector yielded up to six times more beta-glucuronidase activity than the transcriptional fusion vector in these strains after induction by nisin. In this way, gene expression can be achieved in a dynamic range of more than 1,000-fold. The beta-glucuronidase activity was found to be up to 25-fold higher in extracts of strain NZ3900 than in extracts of strain NZ9800. This translational fusion vector was used for high-level production of aminopeptidase N, up to 47% of the total intracellular protein. These results clearly illustrate the potential of the nisin-inducible expression system for overproduction of desired proteins.

866 citations

References
More filters
Journal ArticleDOI
15 Aug 1970-Nature
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Abstract: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.

232,912 citations

Journal Article
01 Jan 1970-Nature
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Abstract: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.

203,017 citations

Journal ArticleDOI
TL;DR: A new method for determining nucleotide sequences in DNA is described, which makes use of the 2',3'-dideoxy and arabinon nucleoside analogues of the normal deoxynucleoside triphosphates, which act as specific chain-terminating inhibitors of DNA polymerase.
Abstract: A new method for determining nucleotide sequences in DNA is described. It is similar to the “plus and minus” method [Sanger, F. & Coulson, A. R. (1975) J. Mol. Biol. 94, 441-448] but makes use of the 2′,3′-dideoxy and arabinonucleoside analogues of the normal deoxynucleoside triphosphates, which act as specific chain-terminating inhibitors of DNA polymerase. The technique has been applied to the DNA of bacteriophage ϕX174 and is more rapid and more accurate than either the plus or the minus method.

62,728 citations

Journal ArticleDOI
01 Jan 1985-Gene
TL;DR: New Escherichia coli host strains have been constructed for the E. coli bacteriophage M13 and the high-copy-number pUC-plasmid cloning vectors and mutations introduced into these strains improve cloning of unmodified DNA and of repetitive sequences.

14,954 citations