scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Characterization of three‐dimensional printed thermal‐stimulus polylactic acid‐hydroxyapatite‐based shape memory scaffolds

About: This article is published in Polymer Composites.The article was published on 2020-06-25. It has received 77 citations till now. The article focuses on the topics: Shape-memory polymer & Polylactic acid.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a literature review is conducted to classify the articles on EWM applications in machining operations, which included 65 academic articles from different journals, books, and conferences since the year 2009.
Abstract: Machining operation optimization improves the quality of the product, reduces cost, enhances overall efficiency by reducing human error, and enables consistent and efficient operation. It is a vital decision-making process and achieves the best solution within constraints. It reduces reliance on machine-tool technicians and handbooks to identify cutting parameters, as a lack of awareness of the optimal combination of machining parameters leads to several machining inefficiencies. Subsequently, the optimization of the machining process is more useful for units of production, particularly machining units. In multi-objective optimization (MOO) problems, weights of importance are assigned, mostly identical. But, nowadays, the weights assignment techniques have received a lot of consideration from the professionals and researchers in MOO problems. Various techniques are developed to assign weights of significance to responses in MOO. The Entropy weights method (EWM) continues to work pleasingly across diverse machining operations to allocate objective weights. In this paper, a literature review is conducted to classify the articles on EWM applications in machining operations. The categorization proposal for the EWM reviews included 65 academic articles from different journals, books, and conferences since the year 2009. The EWM applications were separated into 18 categories of conventional and non-conventional machining operations. The implementation procedure of EWM is presented with an example along with method development. Scholarly articles in the EWM applications are further inferred based on (1) implementation of EWM in different machining operations, (2) MOO methods used with entropy weights in machining operations, (3) application of entropy weights by citation index and publication year, and (4) entropy weights applications in other fields. The review paper provided constructive insight into the EWM applications and ended with suggestions for further research in machining and different areas.

165 citations

Journal ArticleDOI
16 Sep 2021-Polymer
TL;DR: The commonly-used polylactic acid (PLA) polymer has been recognized as a compelling material candidate for 4D printing as it is a biobased polymer with great shape memory behavior that can be employed in the design and manufacturing of a broad range of smart products.

78 citations

Journal ArticleDOI
TL;DR: A simple multi-criteria decision-making (MCDM) methodology based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is presented to choose an industrial robot for the arc welding operation and showed that the MCDM approaches for robot selection are quite useful.

74 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the mechanical reliability and in vitro bioactivity of the 3D printed hydroxyapatite (HA) reinforced polylactic acid (PLA) porous scaffolds.
Abstract: The study aimed to investigate the mechanical reliability and in vitro bioactivity of the three-dimensional (3D) printed hydroxyapatite (HA) reinforced polylactic acid (PLA) porous scaffolds. The experiments have been performed to study the effect of HA wt.% in PLA matrix, infill density, and post-printing thermal-stimulus on the flexural and compressive strength. Next to this, the best combination of input parameters, in-response of the observed mechanical properties, was determined to print the test specimens for the analysis of reliability, through Weibull distribution. Further, the fracture morphology of the developed PLA/HA porous scaffolds has been investigated, using scanning electron microscopy, to observe the involved fracture mechanism. Moreover, the in vitro cell-culture with osteoblastic bone marrow mesenchymal stem cells-lines has been studied after 1, 3, and 7 days of seeding. The results of the study highlighted that the processing parameters have a strong impact on the mechanical properties of the 3D printed porous scaffolds. Further, the in vitro analysis showed excellent growth, proliferation, and differentiation of osteoplastic cells. Along with these, the result of the Weibull distribution advocated that the printed porous scaffolds are mechanically reliable. Overall, the present study unequivocally advocates that the 3D printed PLA/HA scaffold can be used for potential tissue engineering and biomedical applications.

51 citations

Journal ArticleDOI
TL;DR: An inclusive analysis of 268 documents about specific energy consumption (SEC) in machining operations from 2001 to 2020 in the Scopus database is made to deliver an inclusive perception for the scholars working in this field.
Abstract: This paper’s persistence is to make an inclusive analysis of 268 documents about specific energy consumption (SEC) in machining operations from 2001 to 2020 in the Scopus database. A systematic approach collects information on SEC documents’ primary data; their types, publications, citations, and predictions are presented. The VOSviewer 1.1.16 and Biblioshiny 2.0 software are used for visualization analysis to show the progress standing of SEC publications. The selection criteria of documents are set for citation analysis. The ranks are assigned to the most prolific and dominant authors, sources, articles, countries, and organizations based on the total citations, number of documents, average total citation, and total link strength. The author-keywords, index-keywords, and text data content analysis has been conducted to find the hotspots and progress trend in SEC in machining operations. The most prolific and dominant article, source, author, organization, and country are Anderson et al. “Laser-assisted machining of Inconel 718 with an economic analysis”, the Int J Mach Tools Manuf, Shin Y.C., form Purdue University Singapore, and United States, respectively, based on total citations as per defined criteria. The author keywords “specific cutting energy” and “surface roughness” dominate the machining operations SEC. SEC’s implication in machining operations review and bibliometric analysis is to deliver an inclusive perception for the scholars working in this field. It is the primary paper that utilizes bibliometric research to analyze the SEC in machining operations publications expansively. It is valuable for scholars to grasp the hotspots in this field in time and help the researchers in the SEC exploration arena rapidly comprehend the expansion status and trend.

39 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a biodegradable composites were prepared using microcrystalline cellulose (MCC) as the reinforcement and polylactic acid (PLA) as a matrix.
Abstract: Biodegradable composites were prepared using microcrystalline cellulose (MCC) as the reinforcement and polylactic acid (PLA) as a matrix. PLA is polyester of lactic acid and MCC is cellulose derive ...

751 citations

Journal ArticleDOI
TL;DR: The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology.
Abstract: We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites.

722 citations

Book
17 Nov 2004
TL;DR: In this paper, the Beauty of Response Surface Methods (BMSM) is used to find the sweet spot for multiple responses in response surface methods (surface methods) and RSM is applied to Mixtures.
Abstract: Preface Chapter 1: Introduction to the Beauty of Response Surface Methods Chapter 2: Lessons to Learn from Happenstance Regression Chapter 3: Factorials to set the stage for more glamorous RSM Designs Chapter 4: Central Composite Design: Stars Added-RSM Show Begins Chapter 5: Three-Level Designs Chapter 6: Finding your sweet spot for multiple responses Chapter 7: Computer-generated optimal designs Chapter 8: Everything you should know about CCDs (but dare not ask!) Chapter 9: RSM for Six Sigma Chapter 10: Other Applications for RSM Chapter 11: Applying RSM to Mixtures Glossary References About the authors Index About the Software

515 citations

Journal ArticleDOI
TL;DR: PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME and were found to withstand up to three compression-heating-compression cycles without delamination.
Abstract: In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700μm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME.

356 citations

Journal ArticleDOI
TL;DR: Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors.
Abstract: Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

347 citations