scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Charge carrier recombination in organic solar cells

01 Dec 2013-Progress in Polymer Science (Pergamon)-Vol. 38, Iss: 12, pp 1941-1960
TL;DR: In this paper, the authors review the latest on geminate and nongeminate recombination in organic solar cells and discuss the key loss mechanisms in charge carrier recombination, which is one of the most promising alternative energy sources because of their ease of processing and their potential to be produced using large scale techniques such as roll-to-roll, newspaper style, coating.
About: This article is published in Progress in Polymer Science.The article was published on 2013-12-01. It has received 538 citations till now. The article focuses on the topics: Non-radiative recombination & Charge carrier.
Citations
More filters
Journal ArticleDOI
30 Jan 2015-Science
TL;DR: A solution-based hot-casting technique is demonstrated to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains that are applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.
Abstract: State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.

2,960 citations

Journal ArticleDOI
TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
Abstract: Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjug...

995 citations

Journal ArticleDOI
TL;DR: In this article, a solution-processed small-molecule solar cells with almost 100% internal quantum efficiency and a power conversion efficiency of 9% were reported, making use of a donor molecule called DRCN7T and use PC71BM as an acceptor.
Abstract: Solution-processed small-molecule solar cells with almost 100% internal quantum efficiency and a power conversion efficiency of 9% are reported. The cells make use of a donor molecule called DRCN7T and use PC71BM as an acceptor.

764 citations

Journal ArticleDOI
TL;DR: A small molecule named DR3TSBDT with dialkylthiol-substituted benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit was designed and synthesized for solution-processed bulk-heterojunction solar cells.
Abstract: A small molecule named DR3TSBDT with dialkylthiol-substituted benzo[1,2-b:4,5-b′]dithiophene (BDT) as the central unit was designed and synthesized for solution-processed bulk-heterojunction solar cells. A notable power conversion efficiency of 9.95% (certified 9.938%) has been achieved under AM 1.5G irradiation (100 mW cm–2), with an average PCE of 9.60% based on 50 devices.

667 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a basic physical description of the exciton diffusion in organic semiconductors and present experimental methods that are used to measure the key parameters of this process.
Abstract: The purpose of this review is to provide a basic physical description of the exciton diffusion in organic semiconductors. Furthermore, experimental methods that are used to measure the key parameters of this process as well as strategies to manipulate the exciton diffusion length are summarized. Special attention is devoted to the temperature dependence of exciton diffusion and its relationship to Forster energy transfer rates. An extensive table of more than a hundred measurements of the exciton diffusion length in various organic semiconductors is presented. Finally, an outlook of remaining challenges for future research is provided.

659 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
William Shockley1, W. T. Read1
TL;DR: In this article, the statistics of the recombination of holes and electrons in semiconductors were analyzed on the basis of a model in which the recombinations occurred through the mechanism of trapping.
Abstract: The statistics of the recombination of holes and electrons in semiconductors is analyzed on the basis of a model in which the recombination occurs through the mechanism of trapping. A trap is assumed to have an energy level in the energy gap so that its charge may have either of two values differing by one electronic charge. The dependence of lifetime of injected carriers upon initial conductivity and upon injected carrier density is discussed.

5,442 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a review of several organic photovoltaics (OPV) technologies, including conjugated polymers with high-electron-affinity molecules like C60 (as in the bulk-heterojunction solar cell).
Abstract: There has been an intensive search for cost-effective photovoltaics since the development of the first solar cells in the 1950s. [1–3] Among all alternative technologies to silicon-based pn-junction solar cells, organic solar cells could lead the most significant cost reduction. [4] The field of organic photovoltaics (OPVs) comprises organic/inorganic nanostructures like dyesensitized solar cells, multilayers of small organic molecules, and phase-separated mixtures of organic materials (the bulkheterojunction solar cell). A review of several OPV technologies has been presented recently. [5] Light absorption in organic solar cells leads to the generation of excited, bound electron– hole pairs (often called excitons). To achieve substantial energy-conversion efficiencies, these excited electron–hole pairs need to be dissociated into free charge carriers with a high yield. Excitons can be dissociated at interfaces of materials with different electron affinities or by electric fields, or the dissociation can be trap or impurity assisted. Blending conjugated polymers with high-electron-affinity molecules like C60 (as in the bulk-heterojunction solar cell) has proven to be an efficient way for rapid exciton dissociation. Conjugated polymer–C60 interpenetrating networks exhibit ultrafast charge transfer (∼40 fs). [6,7] As there is no competing decay process of the optically excited electron–hole pair located on the polymer in this time regime, an optimized mixture with C60 converts absorbed photons to electrons with an efficiency close to 100%. [8] The associated bicontinuous interpenetrating network enables efficient collection of the separated charges at the electrodes. The bulk-heterojunction solar cell has attracted a lot of attention because of its potential to be a true low-cost photovoltaic technology. A simple coating or printing process would enable roll-to-roll manufacturing of flexible, low-weight PV modules, which should permit cost-efficient production and the development of products for new markets, e.g., in the field of portable electronics. One major obstacle for the commercialization of bulk-heterojunction solar cells is the relatively small device efficiencies that have been demonstrated up to now. [5] The best energy-conversion efficiencies published for small-area devices approach 5%. [9–11] A detailed analysis of state-of-the-art bulk-heterojunction solar cells [8] reveals that the efficiency is limited by the low opencircuit voltage (Voc) delivered by these devices under illumination. Typically, organic semiconductors with a bandgap of about 2 eV are applied as photoactive materials, but the observed open-circuit voltages are only in the range of 0.5–1 V. There has long been a controversy about the origin of the Voc in conjugated polymer–fullerene solar cells. Following the classical thin-film solar-cell concept, the metal–insulator–metal (MIM) model was applied to bulk-heterojunction devices. In the MIM picture, Voc is simply equal to the work-function difference of the two metal electrodes. The model had to be modified after the observation of the strong influence of the reduction potential of the fullerene on the open-circuit volt

4,816 citations

Journal ArticleDOI
TL;DR: In this paper, a two-layer organic photovoltaic cell was fabricated from copper phthalocyanine and a perylene tetracarboxylic derivative, achieving a power conversion efficiency of about 1% under simulated AM2 illumination.
Abstract: A thin‐film, two‐layer organic photovoltaiccell has been fabricated from copper phthalocyanine and a perylene tetracarboxylic derivative. A power conversion efficiency of about 1% has been achieved under simulated AM2 illumination. A novel feature of the device is that the charge‐generation efficiency is relatively independent of the bias voltage, resulting in cells with fill factor values as high as 0.65. The interface between the two organic materials, rather than the electrode/organic contacts, is crucial in determining the photovoltaicproperties of the cell.

4,717 citations

Journal ArticleDOI
TL;DR: By applying specific fabrication conditions summarized in the Experimental section and post-production annealing at 150°C, polymer solar cells with power-conversion efficiency approaching 5% were demonstrated.
Abstract: By applying the specific fabrication conditions summarized in the Experimental section and post-production annealing at 150 °C, polymer solar cells with power-conversion efficiency approaching 5 % are demonstrated. These devices exhibit remarkable thermal stability. We attribute the improved performance to changes in the bulk heterojunction material induced by thermal annealing. The improved nanoscale morphology, the increased crystallinity of the semiconducting polymer, and the improved contact to the electron-collecting electrode facilitate charge generation, charge transport to, and charge collection at the electrodes, thereby enhancing the device efficiency by lowering the series resistance of the polymer solar cells.

4,513 citations