scispace - formally typeset
Journal ArticleDOI

CHARMM-GUI: a web-based graphical user interface for CHARMM.

Reads0
Chats0
TLDR
The CHARMM-GUI as mentioned in this paper is a web-based graphical user interface to generate various input files and molecular systems to facilitate and standardize the usage of common and advanced simulation techniques in CHARMM.
Abstract
CHARMM is an academic research program used widely for macromolecular mechanics and dynamics with versatile analysis and manipulation tools of atomic coordinates and dynamics trajectories. CHARMM-GUI, http://www.charmm-gui.org, has been developed to provide a web-based graphical user interface to generate various input files and molecular systems to facilitate and standardize the usage of common and advanced simulation techniques in CHARMM. The web environment provides an ideal platform to build and validate a molecular model system in an interactive fashion such that, if a problem is found through visual inspection, one can go back to the previous setup and regenerate the whole system again. In this article, we describe the currently available functional modules of CHARMM-GUI Input Generator that form a basis for the advanced simulation techniques. Future directions of the CHARMM-GUI development project are also discussed briefly together with other features in the CHARMM-GUI website, such as Archive and Movie Gallery.

read more

Citations
More filters
Journal ArticleDOI

Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles.

TL;DR: The results indicate that the revised CHARMM 36 parameters represent an improved model for the modeling and simulation studies of proteins, including studies of protein folding, assembly and functionally relevant conformational changes.
Journal ArticleDOI

CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data

TL;DR: The results show how the changes in the internal parameters associated with the peptide backbone via CMAP and the χ1 and χ2 dihedral parameters leads to improved treatment of the analyzed nonbond interactions.
Journal ArticleDOI

CHARMM-GUI Membrane Builder Toward Realistic Biological Membrane Simulations

TL;DR: The new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems are described, including addition of new lipid types, including phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol.
References
More filters
Book

Computer Simulation of Liquids

TL;DR: In this paper, the gear predictor -corrector is used to calculate forces and torques in a non-equilibrium molecular dynamics simulation using Monte Carlo methods. But it is not suitable for the gear prediction problem.
Journal ArticleDOI

Canonical dynamics: Equilibrium phase-space distributions

TL;DR: The dynamical steady-state probability density is found in an extended phase space with variables x, p/sub x/, V, epsilon-dot, and zeta, where the x are reduced distances and the two variables epsilus-dot andZeta act as thermodynamic friction coefficients.
Journal ArticleDOI

A smooth particle mesh Ewald method

TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Journal ArticleDOI

CHARMM: A program for macromolecular energy, minimization, and dynamics calculations

TL;DR: The CHARMM (Chemistry at Harvard Macromolecular Mechanics) as discussed by the authors is a computer program that uses empirical energy functions to model macromolescular systems, and it can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations.
Journal ArticleDOI

Scalable molecular dynamics with NAMD

TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Related Papers (5)