scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Checkpoint Kinase 1 Pharmacological Inhibition Synergizes with DNA-Damaging Agents and Overcomes Platinum Resistance in Basal-Like Breast Cancer

TL;DR: It is confirmed that the inhibition of this kinase can overcome acquired resistance to cisplatin, and therapeutic options for the clinical development of CHK1 inhibitors are identified.
Abstract: Basal-like breast cancer is an incurable disease with limited therapeutic options, mainly due to the frequent development of anti-cancer drug resistance. Therefore, identification of druggable targets to improve current therapies and overcome these resistances is a major goal. Targeting DNA repair mechanisms has reached the clinical setting and several strategies, like the inhibition of the CHK1 kinase, are currently in clinical development. Here, using a panel of basal-like cancer cell lines, we explored the synergistic interactions of CHK1 inhibitors (rabusertib and SAR020106) with approved therapies in breast cancer and evaluated their potential to overcome resistance. We identified a synergistic action of these inhibitors with agents that produce DNA damage, like platinum compounds, gemcitabine, and the PARP inhibitor olaparib. Our results demonstrated that the combination of rabusertib with these chemotherapies also has a synergistic impact on tumor initiation, invasion capabilities, and apoptosis in vitro. We also revealed a biochemical effect on DNA damage and caspase-dependent apoptosis pathways through the phosphorylation of H2AX, the degradation of full-length PARP, and the increase of caspases 3 and 8 activity. This agent also demonstrated synergistic activity in a platinum-resistant cell line, inducing an increase in cell death in response to cisplatin only when combined with rabusertib, while no toxic effect was found on non-tumorigenic breast tissue-derived cell lines. Lastly, the combination of CHK1 inhibitor with cisplatin and gemcitabine resulted in more activity than single or double combinations, leading to a higher apoptotic effect. In conclusion, in our study we identify therapeutic options for the clinical development of CHK1 inhibitors, and confirm that the inhibition of this kinase can overcome acquired resistance to cisplatin.
Citations
More filters
Journal ArticleDOI
03 Nov 2022-MedComm
TL;DR: In this article , the authors analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States.
Abstract: Abstract Protein phosphorylation is an important post‐transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small‐molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin‐dependent protein kinase (CaMK) group, CMGC [Cyclin‐dependent kinases (CDKs), Mitogen‐activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2‐like kinases (CLKs)] group, sterile (STE)‐MAPKs group, tyrosine kinases (TK) group, tyrosine kinase‐like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.

6 citations

Journal ArticleDOI
TL;DR: In this paper , the authors used new methylene blue (NMB), toluidine blue O (TBO), and dimethylmethylene blue(DMMB) as cytotoxicity indicators in live (non-fixed) cells treated for 72 h with DMSO and cisplatin.
Abstract: Assessing the in vitro toxicity of compounds on cell cultures is an important step during the screening of candidate molecules for diverse applications. Among the strategies employed to determine cytotoxicity, MTT, neutral red, and resazurin are commonly used. Methylene blue (MB), a phenothiazinium salt, has several uses, such as dye, redox indicator, and even as treatment for human disease and health conditions, such as malaria and methemoglobinemia. However, MB has only been sparsely used as a cellular toxicity indicator. As a viability indicator, MB is mostly applied to fixed cultures at high concentrations, especially when compared to MTT or neutral red. Here we show that MB and its related compounds new methylene blue (NMB), toluidine blue O (TBO), and dimethylmethylene blue (DMMB) can be used as cytotoxicity indicators in live (non-fixed) cells treated for 72 h with DMSO and cisplatin. We compared dye uptake between phenothiazinium dyes and neutral red by analyzing supernatant and cell content via visible spectra scanning and microscopy. All dyes showed a similar ability to assess cell toxicity compared to either MTT or neutral red. Our method represents a cost-effective alternative to in vitro cytotoxicity assays using cisplatin or DMSO, indicating the potential of phenothiazinium dyes for the screening of candidate drugs and other applications.
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the mechanism of cell cycle checkpoint kinase and drug resistance of lung cancer, and expounded the effective therapeutic targets and methods for lung cancer. But, the authors did not consider the effect of drug resistance on clinical treatment.
Abstract: Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death. Although great progress has been made in chemotherapy, radiotherapy and targeted therapy, the emergence of acquired drug resistance hinders the efficacy of clinical treatment. Studies have shown that tumor is a class of diseases with damaged cell cycle regulation mechanism, in which checkpoint kinase (Chk) plays a core role, Chk1 and Chk2 are very important protein kinases in the checkpoint. In recent years, it has been found that the regulation of Chk1 and Chk2 plays an important role in the clinical treatment and drug resistance mechanism of lung cancer. This article reviews the mechanism of cell cycle checkpoint kinase and drug resistance of lung cancer, and expounds the effective therapeutic targets and methods of lung cancer. .
References
More filters
Journal ArticleDOI
TL;DR: The addition of trastuzumab to chemotherapy was associated with a longer time to disease progression, a higher rate of objective response, a longer duration of response, and a lower rate of death at 1 year.
Abstract: Background The HER2 gene, which encodes the growth factor receptor HER2, is amplified and HER2 is overexpressed in 25 to 30 percent of breast cancers, increasing the aggressiveness of the tumor. Methods We evaluated the efficacy and safety of trastuzumab, a recombinant monoclonal antibody against HER2, in women with metastatic breast cancer that overexpressed HER2. We randomly assigned 234 patients to receive standard chemotherapy alone and 235 patients to receive standard chemotherapy plus trastuzumab. Patients who had not previously received adjuvant (postoperative) therapy with an anthracycline were treated with doxorubicin (or epirubicin in the case of 36 women) and cyclophosphamide with (143 women) or without trastuzumab (138 women). Patients who had previously received adjuvant anthracycline were treated with paclitaxel alone (96 women) or paclitaxel with trastuzumab (92 women). Results The addition of trastuzumab to chemotherapy was associated with a longer time to disease progression (median, 7.4 ...

10,532 citations


"Checkpoint Kinase 1 Pharmacological..." refers background in this paper

  • ...This has been the case with the identification of HER2 amplification in breast cancer, which led to the design of antibodies or small tyrosine kinase inhibitors against this protein [3,4]....

    [...]

Journal ArticleDOI
TL;DR: Vemurafenib produced improved rates of overall and progression-free survival in patients with previously untreated melanoma with the BRAF V600E mutation in a phase 3 randomized clinical trial.
Abstract: At 6 months, overall survival was 84% (95% confidence interval [CI], 78 to 89) in the vemurafenib group and 64% (95% CI, 56 to 73) in the dacarbazine group. In the interim analysis for overall survival and final analysis for progression-free survival, vemurafenib was associated with a relative reduction of 63% in the risk of death and of 74% in the risk of either death or disease progression, as compared with dacarbazine (P<0.001 for both comparisons). After review of the interim analysis by an independent data and safety monitoring board, crossover from dacarbazine to vemurafenib was recommended. Response rates were 48% for vemurafenib and 5% for dacarbazine. Common adverse events associated with vemurafenib were arthralgia, rash, fatigue, alopecia, keratoacanthoma or squamous-cell carcinoma, photosensitivity, nausea, and diarrhea; 38% of patients required dose modification because of toxic effects. Conclusions Vemurafenib produced improved rates of overall and progression-free survival in patients with previously untreated melanoma with the BRAF V600E mutation. (Funded by Hoffmann–La Roche; BRIM-3 ClinicalTrials.gov number, NCT01006980.)

6,773 citations


"Checkpoint Kinase 1 Pharmacological..." refers background in this paper

  • ...In line with this, other investigational compounds have reached the clinical setting, including B-RAF or MEK inhibitors in BRAF (V600E)-mutant tumors such as melanoma or non-small cell lung cancer [5,6]....

    [...]

Journal ArticleDOI
TL;DR: This brief perspective article focuses on the most common errors and pitfalls, as well as the do's and don'ts in drug combination studies, in terms of experimental design, data acquisition, data interpretation, and computerized simulation.
Abstract: This brief perspective article focuses on the most common errors and pitfalls, as well as the do's and don'ts in drug combination studies, in terms of experimental design, data acquisition, data interpretation, and computerized simulation. The Chou-Talalay method for drug combination is based on the median-effect equation, derived from the mass-action law principle, which is the unified theory that provides the common link between single entity and multiple entities, and first order and higher order dynamics. This general equation encompasses the Michaelis-Menten, Hill, Henderson-Hasselbalch, and Scatchard equations in biochemistry and biophysics. The resulting combination index (CI) theorem of Chou-Talalay offers quantitative definition for additive effect (CI = 1), synergism (CI 1) in drug combinations. This theory also provides algorithms for automated computer simulation for synergism and/or antagonism at any effect and dose level, as shown in the CI plot and isobologram, respectively.

4,287 citations


"Checkpoint Kinase 1 Pharmacological..." refers methods or result in this paper

  • ...To explore whether the administration of rabusertib was synergistic with any of the chemotherapies mentioned, we used the Chou and Talalay method [20,21]....

    [...]

  • ...Results in line with these findings have been observed in other tumor types such as bladder, pancreatic, or colon cancer [20,22]....

    [...]

Journal ArticleDOI
TL;DR: Among patients with HER2‐negative metastatic breast cancer and a germline BRCA mutation, Olaparib monotherapy provided a significant benefit over standard therapy; median progression‐free survival was 2.8 months longer and the risk of disease progression or death was 42% lower with olaparIB monotherapy than with standard therapy.
Abstract: BackgroundOlaparib is an oral poly(adenosine diphosphate–ribose) polymerase inhibitor that has promising antitumor activity in patients with metastatic breast cancer and a germline BRCA mutation. MethodsWe conducted a randomized, open-label, phase 3 trial in which olaparib monotherapy was compared with standard therapy in patients with a germline BRCA mutation and human epidermal growth factor receptor type 2 (HER2)–negative metastatic breast cancer who had received no more than two previous chemotherapy regimens for metastatic disease. Patients were randomly assigned, in a 2:1 ratio, to receive olaparib tablets (300 mg twice daily) or standard therapy with single-agent chemotherapy of the physician’s choice (capecitabine, eribulin, or vinorelbine in 21-day cycles). The primary end point was progression-free survival, which was assessed by blinded independent central review and was analyzed on an intention-to-treat basis. ResultsOf the 302 patients who underwent randomization, 205 were assigned to receive...

1,927 citations


"Checkpoint Kinase 1 Pharmacological..." refers background in this paper

  • ...We also included olaparib, a PARP inhibitor that has recently been approved for the treatment of breast cancers with germ line mutations of the BRCA gene [19]....

    [...]

Journal ArticleDOI
17 Mar 2017-Science
TL;DR: Current knowledge of PARP inhibitors and potential ways to maximize their clinical effectiveness are discussed, and interesting lessons for the development of other therapies are provided.
Abstract: PARP inhibitors (PARPi), a cancer therapy targeting poly(ADP-ribose) polymerase, are the first clinically approved drugs designed to exploit synthetic lethality, a genetic concept proposed nearly a century ago. Tumors arising in patients who carry germline mutations in either BRCA1 or BRCA2 are sensitive to PARPi because they have a specific type of DNA repair defect. PARPi also show promising activity in more common cancers that share this repair defect. However, as with other targeted therapies, resistance to PARPi arises in advanced disease. In addition, determining the optimal use of PARPi within drug combination approaches has been challenging. Nevertheless, the preclinical discovery of PARPi synthetic lethality and the route to clinical approval provide interesting lessons for the development of other therapies. Here, we discuss current knowledge of PARP inhibitors and potential ways to maximize their clinical effectiveness.

1,643 citations


"Checkpoint Kinase 1 Pharmacological..." refers background in this paper

  • ...Targeted therapies can also be designed against proteins or pathways that can establish a synthetic lethality interaction when combined with other agents [7,8]....

    [...]

  • ...The inhibition of a single pathway causes cells to be more dependent on other routes to maintain cell survival; therefore, those survival routes are optimal targets for drug inhibition [8]....

    [...]