scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Chemical characterization of silicon-substituted hydroxyapatite.

15 Mar 1999-Journal of Biomedical Materials Research (J Biomed Mater Res)-Vol. 44, Iss: 4, pp 422-428
TL;DR: Chemical analysis confirmed the proposed substitution of the silicon (or silicate) ion for the phosphorus (or phosphate) ion in hydroxyapatite and demonstrated that phase-pure silicon-substituted hydroxyAPatite may be prepared using a simple precipitation technique.
Abstract: Bioceramic specimens have been prepared by incorporating a small amount of silicon (0.4 wt %) into the structure of hydroxyapatite [Ca10(PO4)6(OH)2, HA] via an aqueous precipitation reaction to produce a silicon-substituted hydroxyapatite (Si-HA). The results of chemical analysis confirmed the proposed substitution of the silicon (or silicate) ion for the phosphorus (or phosphate) ion in hydroxyapatite. The Si-HA was produced by first preparing a silicon-substituted apatite (Si-Ap) by a precipitation process. A single-phase Si-HA was obtained by heating/calcining the as-prepared Si-Ap to temperatures above 700 degrees C; no secondary phases, such as tricalcium phosphate (TCP), tetracalcium phosphate (TeCP), or calcium oxide (CaO), were observed by X-ray diffraction analysis. Although the X-ray diffraction patterns of Si-HA and stoichiometric HA appeared to be identical, refinement of the diffraction data revealed some small structural differences between the two materials. The silicon substitution in the HA lattice resulted in a small decrease in the a axis and an increase in the c axis of the unit cell. This substitution also caused a decrease in the number of hydroxyl (OH) groups in the unit cell, which was expected from the proposed substitution mechanism. The incorporation of silicon in the HA lattice resulted in an increase in the distortion of the PO4 tetrahedra, indicated by an increase in the distortion index. Analysis of the Si-HA by Fourier transform infrared (FTIR) spectroscopy indicated that although the amount of silicon incorporated into the HA lattice was small, silicon substitution appeared to affect the FTIR spectra of HA, in particular the P-O vibrational bands. The results demonstrate that phase-pure silicon-substituted hydroxyapatite may be prepared using a simple precipitation technique.
Citations
More filters
Journal ArticleDOI
TL;DR: This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development.

1,215 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the role played by biological calcium phosphates in bone regeneration is presented, where the synthesis procedures to obtain in the laboratory calcium deficient carbonate nanoapatite both in bulk and thin film forms, as well as the characterization methods applied to these materials are described.

1,014 citations

Journal ArticleDOI
TL;DR: There have been a number of major advances made in the field of bioactive ceramics, glasses and glass-ceramics during the past 30-40 years.
Abstract: There have been a number of major advances made in the field of bioactive ceramics, glasses and glass ceramics during the past 30–40 years. From initial work on the development of materials that are tolerated in the physiological environment, emphasis has now shifted towards the use of ceramic materials that interact with bone tissue by forming a direct bond. It is now possible to choose, by compositional control, whether these materials are biologically stable once incorporated within the skeletal structure or whether they are resorbed over time. This paper reviews the ground-breaking work that was performed during the 1970s and 1980s in the field of bioceramics in the production and characterisation of bioactive and bioresorbable glasses, glass ceramics and calcium phosphates. The review then explores the influence of the original concepts and ideas on the more recent development of ceramic scaffolds, composites and coatings with enhanced bioactivity for bone tissue engineering.

718 citations

Journal ArticleDOI
TL;DR: An overview of the recent results achieved on ion-substituted calcium phosphates prepared at low temperature, i.e. by direct synthesis in aqueous medium or through hydrolysis of more soluble calcium phosphate based materials is provided.

697 citations

Journal ArticleDOI
TL;DR: The aim of this manuscript is to highlight the tremendous improvements achieved in CaP materials research in the past 15 years, in particular in the field of biomineralization, as carrier for gene or ion delivery, as biologically active agent, and as bone graft substitute.

627 citations

References
More filters
Journal ArticleDOI
TL;DR: The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues.
Abstract: Ceramics used for the repair and reconstruction of diseased or damaged parts of the musculo-skeletal system, termed bioceramics, may be bioinert (alumina, zirconia), resorbable (tricalcium phosphate), bioactive (hydroxyapatite, bioactive glasses, and glass-ceramics), or porous for tissue ingrowth (hydroxyapatite-coated metals, alumina). Applications include replacements for hips, knees, teeth, tendons, and ligaments and repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jaw bone, spinal fusion, and bone fillers after tumor surgery. Carbon coatings are thromboresistant and are used for prosthetic heart valves. The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues. Composites are being developed with high toughness and elastic modulus match with bone. Therapeutic treatment of cancer has been achieved by localized delivery of radioactive isotopes via glass beads. Development of standard test methods for prediction of long-term (20-year) mechanical reliability under load is still needed.

4,292 citations

Journal Article
TL;DR: The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues.
Abstract: Ceramics used for the repair and reconstruction of diseased or damaged parts of the musculo-skeletal system, termed bioceramics, may be bioinert (alumina, zirconia), resorbable (tricalcium phosphate), bioactive (hydroxyapatite, bioactive glasses, and glass-ceramics), or porous for tissue ingrowth (hydroxyapatite-coated metals, alumina). Applications include replacements for hips, knees, teeth, tendons, and ligaments and repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jaw bone, spinal fusion, and bone fillers after tumor surgery. Carbon coatings are thromboresistant and are used for prosthetic heart valves. The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues. Composites are being developed with high toughness and elastic modulus match with bone. Therapeutic treatment of cancer has been achieved by localized delivery of radioactive isotopes via glass beads. Development of standard test methods for prediction of long-term (20-year) mechanical reliability under load is still needed.

4,213 citations

Journal ArticleDOI
16 Jan 1970-Science
TL;DR: Silicon, a relatively unknown trace element in nutritional research, has been uniquely localized in active calcification sites in young bone and is suggested to be associated with calcium in an early stage of calcification.
Abstract: Silicon, a relatively unknown trace element in nutritional research, has been uniquely localized in active calcification sites in young bone. Silicon increases directly with calcium at relatively low calcium concentrations and falls below the detection limit at compositions approaching hydroxyapatite. It is suggested that silicon is associated with calcium in an early stage of calcification.

867 citations