scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: a Nanotechnology Perspective

01 Oct 2011-Canadian Journal of Chemical Engineering (John Wiley & Sons, Ltd)-Vol. 89, Iss: 5, pp 1191-1206
TL;DR: Nanocrystalline cellulose (NCC) is an emerging renewable nanomaterial that holds promise in many different applications, such as in personal care, chemicals, foods, pharmaceuticals, etc as discussed by the authors.
Abstract: Nanocrystalline cellulose (NCC) is an emerging renewable nanomaterial that holds promise in many different applications, such as in personal care, chemicals, foods, pharmaceuticals, etc. By appropriate modification of NCC, various functional nanomaterials with outstanding properties, or significantly improved physical, chemical, biological, as well as electronic properties can be developed. The nanoparticles are stabilised in aqueous suspension by negative charges on the surface, which are produced during the acid hydrolysis process. NCC suspensions can form a chiral nematic ordered phase beyond a critical concentration, i.e. NCC suspensions transform from an isotropic to an anisotropic chiral nematic liquid crystalline phase. Due to its nanoscale dimension and intrinsic physicochemical properties, NCC is a promising renewable biomaterial that can be used as a reinforcing component in high performance nanocomposites. Many new nanocomposite materials with attractive properties were obtained by the physical incorporation of NCC into a natural or synthetic polymeric matrix. Simple chemical modification on NCC surface can improve its dispersability in different solvents and expand its utilisation in nano-related applications, such as drug delivery, protein immobilisation, and inorganic reaction template. This review paper provides an overview on this emerging nanomaterial, focusing on the surface modification, properties and applications of NCC.
Citations
More filters
Journal ArticleDOI
TL;DR: This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials.

916 citations

Journal ArticleDOI
TL;DR: This article critically and comprehensively reviews the emerging polysaccharide nanocrystal-based functional nanomaterials with special applications, such as biomedical materials, biomimetic optical nanmaterials, bio-inspired mechanically adaptive nanommaterials, permselective nanostructured membranes, template for synthesizing inorganic nanoparticles, polymer electrolytes, emulsion nano-stabilizer and decontamination of organic pollutants.
Abstract: Intensive exploration and research in the past few decades on polysaccharide nanocrystals, the highly crystalline nanoscale materials derived from natural resources, mainly focused originally on their use as a reinforcing nanophase in nanocomposites. However, these investigations have led to the emergence of more diverse potential applications exploiting the functionality of these nanomaterials. Based on the construction strategies of functional nanomaterials, this article critically and comprehensively reviews the emerging polysaccharide nanocrystal-based functional nanomaterials with special applications, such as biomedical materials, biomimetic optical nanomaterials, bio-inspired mechanically adaptive nanomaterials, permselective nanostructured membranes, template for synthesizing inorganic nanoparticles, polymer electrolytes, emulsion nano-stabilizer and decontamination of organic pollutants. We focus on the preparation, unique properties and performances of the different polysaccharide nanocrystal materials. At the same time, the advantages, physicochemical properties and chemical modifications of polysaccharide nanocrystals are also comparatively discussed in view of materials development. Finally, the perspective and current challenges of polysaccharide nanocrystals in future functional nanomaterials are outlined.

758 citations

Journal ArticleDOI
TL;DR: This review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation.
Abstract: Cellulose nanocrystals, a class of fascinating bio-based nanoscale materials, have received a tremendous amount of interest both in industry and academia owing to its unique structural features and impressive physicochemical properties such as biocompatibility, biodegradability, renewability, low density, adaptable surface chemistry, optical transparency, and improved mechanical properties. This nanomaterial is a promising candidate for applications in fields such as biomedical, pharmaceuticals, electronics, barrier films, nanocomposites, membranes, supercapacitors, etc. New resources, new extraction procedures, and new treatments are currently under development to satisfy the increasing demand of manufacturing new types of cellulose nanocrystals-based materials on an industrial scale. Therefore, this review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation. A critical and analytical examination of the shortcomings of various approaches employed so far is made. Additionally, structural organization of cellulose and nomenclature of cellulose nanomaterials have also been discussed for beginners in this field.

691 citations

Journal ArticleDOI
TL;DR: This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose Nanofibrils.
Abstract: A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

606 citations

Journal ArticleDOI
TL;DR: This review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals.
Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted.

568 citations


Cites background from "Chemistry and Applications of Nanoc..."

  • ...The aspect ratio also plays an important role in the formation of percolated networks that improve the mechanical performances of polymer nanocomposites.(45)...

    [...]

References
More filters
Journal ArticleDOI
22 Oct 1992-Nature
TL;DR: In this paper, the synthesis of mesoporous inorganic solids from calcination of aluminosilicate gels in the presence of surfactants is described, in which the silicate material forms inorganic walls between ordered surfactant micelles.
Abstract: MICROPOROUS and mesoporous inorganic solids (with pore diameters of ≤20 A and ∼20–500 A respectively)1 have found great utility as catalysts and sorption media because of their large internal surface area. Typical microporous materials are the crystalline framework solids, such as zeolites2, but the largest pore dimensions found so far are ∼10–12 A for some metallophosphates3–5 and ∼14 A for the mineral cacoxenite6. Examples of mesoporous solids include silicas7 and modified layered materials8–11, but these are invariably amorphous or paracrystalline, with pores that are irregularly spaced and broadly distributed in size8,12. Pore size can be controlled by intercalation of layered silicates with a surfactant species9,13, but the final product retains, in part, the layered nature of the precursor material. Here we report the synthesis of mesoporous solids from the calcination of aluminosilicate gels in the presence of surfactants. The material14,15 possesses regular arrays of uniform channels, the dimensions of which can be tailored (in the range 16 A to 100 A or more) through the choice of surfactant, auxiliary chemicals and reaction conditions. We propose that the formation of these materials takes place by means of a liquid-crystal 'templating' mechanism, in which the silicate material forms inorganic walls between ordered surfactant micelles.

15,125 citations


Additional excerpts

  • ...NANOSTRUCTURES VIA TEMPLATING WITH NCC Since Mobil researchers reported the first synthesis of mesoporous material in 1992 (Kresge et al., 1992), this approach has attracted significant attention in fundamental and applied fields....

    [...]

Journal ArticleDOI
TL;DR: Dr. Youssef Habibi’s research interests include the sustainable production of materials from biomass, development of high performance nanocomposites from lignocellulosic materials, biomass conversion technologies, and the application of novel analytical tools in biomass research.
Abstract: Cellulose constitutes the most abundant renewable polymer resource available today. As a chemical raw material, it is generally well-known that it has been used in the form of fibers or derivatives for nearly 150 years for a wide spectrum of products and materials in daily life. What has not been known until relatively recently is that when cellulose fibers are subjected to acid hydrolysis, the fibers yield defect-free, rod-like crystalline residues. Cellulose nanocrystals (CNs) have garnered in the materials community a tremendous level of attention that does not appear to be relenting. These biopolymeric assemblies warrant such attention not only because of their unsurpassed quintessential physical and chemical properties (as will become evident in the review) but also because of their inherent renewability and sustainability in addition to their abundance. They have been the subject of a wide array of research efforts as reinforcing agents in nanocomposites due to their low cost, availability, renewability, light weight, nanoscale dimension, and unique morphology. Indeed, CNs are the fundamental constitutive polymeric motifs of macroscopic cellulosic-based fibers whose sheer volume dwarfs any known natural or synthetic biomaterial. Biopolymers such as cellulose and lignin and † North Carolina State University. ‡ Helsinki University of Technology. Dr. Youssef Habibi is a research assistant professor at the Department of Forest Biomaterials at North Carolina State University. He received his Ph.D. in 2004 in organic chemistry from Joseph Fourier University (Grenoble, France) jointly with CERMAV (Centre de Recherche sur les Macromolecules Vegetales) and Cadi Ayyad University (Marrakesh, Morocco). During his Ph.D., he worked on the structural characterization of cell wall polysaccharides and also performed surface chemical modification, mainly TEMPO-mediated oxidation, of crystalline polysaccharides, as well as their nanocrystals. Prior to joining NCSU, he worked as assistant professor at the French Engineering School of Paper, Printing and Biomaterials (PAGORA, Grenoble Institute of Technology, France) on the development of biodegradable nanocomposites based on nanocrystalline polysaccharides. He also spent two years as postdoctoral fellow at the French Institute for Agricultural Research, INRA, where he developed new nanostructured thin films based on cellulose nanowiskers. Dr. Habibi’s research interests include the sustainable production of materials from biomass, development of high performance nanocomposites from lignocellulosic materials, biomass conversion technologies, and the application of novel analytical tools in biomass research. Chem. Rev. 2010, 110, 3479–3500 3479

4,664 citations


"Chemistry and Applications of Nanoc..." refers background in this paper

  • ...Alternatively, these films can be used as a coating technology to modify the surface of other materials to achieve unique properties (Habibi et al., 2010b)....

    [...]

  • ...The varieties of dimensions depend on the source of cellulosic material and conditions under which the hydrolysis is performed (Habibi et al., 2010a)....

    [...]

  • ...A recent review on NCC was reported by Habibi et al. (2010a), where the chemical structure, composition and their relationship to the optical and mechanical properties of NCC were discussed....

    [...]

Journal ArticleDOI

4,185 citations


Additional excerpts

  • ...This technique allows for very precise control over the grafting process that produces well-defined monodispersed particles (Wang and Matyjaszewski, 1995)....

    [...]

Journal ArticleDOI
TL;DR: There are numerous examples where animals or plants synthesize extracellular high-performance skeletal biocomposites consisting of a matrix reinforced by fibrous biopolymers, which occur as whisker-like microfibrils that are biosynthesized and deposited in a continuous fashion.

2,114 citations


"Chemistry and Applications of Nanoc..." refers background in this paper

  • ...The properties of these cellulosic nanocomposites depend on the types and characteristics of NCC and polymeric matrices (which could be both natural and synthetic polymers) (Samir et al., 2005)....

    [...]

  • ...…matrix and thermal stability were obtained with tunicin whiskers (L/d ∼ 67) in comparison with bacterial (L/d ∼ 60) or Avicel whiskers (L/d ∼ 10) (Samir et al., 2005). de Rodriguez and co-workers (2006) studied sisal nanowhiskers with high aspect ratio as filler in the nanocomposites with…...

    [...]

Reference BookDOI
26 May 2006
TL;DR: Alistair M. Stephen and Shirley C. Cui as mentioned in this paper proposed a method for the detection of polysaccharides in foods, and showed that the method can be applied in the field of agriculture.
Abstract: Introduction, Alistair M. Stephen and Shirley C. Churms Starch: Structure, Analysis, and Application, Henry F. Zobel and Alistair M. Stephen Modified Starches, Otto B. Wurzburg Starch Hydrolysates, Paul H. Blanchard and Frances R. Katz Cellulose and Cellulose Derivatives, Donald G. Coffey, David A. Bell, and Alan Henderson Galactomannans and Other Cell Wall Storage Polysaccharides in Seeds, Michael J. Gidley and J.S. Grant Reid Agars, Norman F. Stanley Gelling Carrageenans, Lennart Piculell Alginates, Kurt Ingar Draget, Storker T. Moe, Gudmund Skjak-Braek, and Olav Smidsrod Inulin, Anne Franck Pectins: Structure, Functionality, and Uses, J.A. Lopes da Silva, and M.A. Rao Bacterial Polysaccharides, V.J. Morris Gums and Mucilages, Peter A. Williams, Glyn O. Phillips, Alistair M. Stephen, and Shirley C. Churms Chitosans, Kjell M. Varum and Olav Smidsrod Polysaccharides in Food Emulsions, George A. van Aken Polysaccharide Rheology and In-Mouth Perception, K. Nishinari Phase Behavior in Mixed Polysaccharide Systems, Vladimir Tolstoguzov Dietary Fiber, Andrew Chesson Genetic Engineering and Food Crops, Jennifer A. Thomson Detection and Determination of Polysaccharides in Foods, Yolanda Brummer and Steve W. Cui Index

1,579 citations