scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts

TL;DR: In this paper, the state-of-the-art studies on the hydrolysis of cellulose into glucose over various types of solid acid catalysts such as acid resins, metal oxides, H-form zeolites, heteropoly acids, functionalized silicas, supported metals, immobilized ionic liquids, carbonaceous acids and magnetic acids are systematically summarized.
Abstract: With the progressive increase in global energy demands and the continuous depletion of worldwide fossil resources, renewable lignocellulosic biomass has attracted more and more attention. As the most abundant component of lignocellulosic biomass, cellulose, which is a linear polymer formed by the repeating connection of glucose units through β-1,4-glycosidic linkages, is considered to be an inexhaustible raw material for the sustainable production of chemicals and fuels. For the effective utilization of cellulose, the primary and essential step is the hydrolysis of cellulose into glucose. Although homogeneous acids and cellulases are the most common catalysts for the hydrolysis of cellulose into glucose, they possess a series of problems such as reactor corrosion, waste treatment and poor recyclability and high cost, low efficiency and long reaction time, respectively. In order to overcome the above-mentioned drawbacks, solid acid catalysts have been increasingly employed for the hydrolysis of cellulose into glucose in recent years. In this review, the state-of-the-art studies on the hydrolysis of cellulose into glucose over various types of solid acid catalysts such as acid resins, metal oxides, H-form zeolites, heteropoly acids, functionalized silicas, supported metals, immobilized ionic liquids, carbonaceous acids and magnetic acids are systematically summarized. Meanwhile, reaction medias, auxiliary methods and neoteric strategies for the hydrolysis of cellulose into glucose are intensively discussed. Furthermore, some potential research trends in the future are also prospected to provide some valuable ideas for the hydrolysis of cellulose into glucose in a more green, simple, efficient and inexpensive way.
Citations
More filters
Journal ArticleDOI
TL;DR: This review focuses on the catalytic chemical conversion of lignocellulose and its primary ingredients into value-added chemicals and fuel products using ILs as the reaction media.
Abstract: Innovative valorization of naturally abundant and renewable lignocellulosic biomass is of great importance in the pursuit of a sustainable future and biobased economy. Ionic liquids (ILs) as an important kind of green solvents and functional fluids have attracted significant attention for the catalytic transformation of lignocellulosic feedstocks into a diverse range of products. Taking advantage of some unique properties of ILs with different functions, the catalytic transformation processes can be carried out more efficiently and potentially with lower environmental impacts. Also, a new product portfolio may be derived from catalytic systems with ILs as media. This review focuses on the catalytic chemical conversion of lignocellulose and its primary ingredients (i.e., cellulose, hemicellulose, and lignin) into value-added chemicals and fuel products using ILs as the reaction media. An outlook is provided at the end of this review to highlight the challenges and opportunities associated with this interes...

627 citations

Journal ArticleDOI
TL;DR: Some answers are provided to the question "How and why anchoring metal nanoparticles, clusters, or single atoms on carbon materials for catalysis?", and some important effects in catalysis inherent to the presence of a carbon-type support are described.
Abstract: The support plays an important role for supported metal catalysts by positioning itself as a macromolecular ligand, which conditions the nature of the active site and contributes indirectly but also sometimes directly to the reactivity. Metal species such as nanoparticles, clusters, or single atoms can be deposited on carbon materials for various catalytic reactions. All the carbon materials used as catalyst support constitute a large family of compounds that can vary both at textural and at structural levels. Today, the recent developments of well-controlled synthesis methodologies, advanced characterization techniques, and modeling tools allow one to correlate the relationships between metal/support/reactant at the molecular level. Based on these considerations, in this Review article, we wish to provide some answers to the question "How and why anchoring metal nanoparticles, clusters, or single atoms on carbon materials for catalysis?". To do this, we will rely on both experimental and theoretical studies. We will first analyze what sites are available on the surface of a carbon support for the anchoring of the active phase. Then, we will describe some important effects in catalysis inherent to the presence of a carbon-type support (metal-support interaction, confinement, spillover, and surface functional group effects). These effects will be commented on by putting into perspective catalytic results obtained in numerous reactions of thermal catalysis, electrocatalysis, or photocatalysis.

371 citations

Journal ArticleDOI
10 Oct 2019-Chem
TL;DR: In this paper, the authors provide an overview on the recent achievements in the catalytic production of value-added chemicals and fuels and provide personal perspectives on the opportunities and challenges within this promising field.

287 citations

Journal ArticleDOI
TL;DR: In contrast to the nonrenewable fossil resources, biomass, the only renewable resource of organic carbon in the nature, is considered as a special kind of inexhaustible feedstocks, which can be used for the synthesis of numerous valuable products in a sustainable manner as discussed by the authors.
Abstract: In contrast to the nonrenewable fossil resources, biomass, the only renewable resource of organic carbon in the nature, is considered as a special kind of inexhaustible feedstocks, which can be used for the synthesis of numerous valuable products in a sustainable manner. Among many biomass-derived products, 5-hydroxymethylfurfural (HMF) is identified to be a crucially important versatile compound due to its marvelous structure that is composed of an aldehyde group, a hydroxyl group and a furan ring. Hence, HMF possesses a very strong chemical reactivity, and it can be further transformed into a wide variety of value-added derivatives. In recent years, the synthetic methods, physicochemical properties and commercial prospects of HMF-based conventional derivatives such as 2,5-dimethylfuran (DMF), 5-ethoxymethylfurfural (EMF), ethyl levulinate (EL), long chain alkane (LLA), levulinic acid (LA), 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) have been intensively reviewed by many researchers. However, up to now, the preparation of HMF-based innovative derivatives such as 2,5-dihydroxymethylfuran (DHMF), 2,5-dihydroxymethyltetrahydrofuran (DHMTHF), 1,2,6-hexanetriol (HTO), 1,6-hexanediol (HDO), 1-hydroxyhexane-2,5-dione (HHD), 3-hydroxymethylcyclopetanone (HMCPN), furan-2,5-dimethylcarboxylate (FDMC), maleic anhydride (MA), 5-hydroxy-5-(hydroxymethyl)furan-2(5H)-one (HHMFO), 5-alkoxymethylfurfural (AMF), 5,5-oxy-(bismethylene)-2-furaldehyde (OBMF), 5-arylaminomethyl-2-furanmethanol (AAMFM), 2,5-furandiamidine dihydrochloride (FDADHC), 1-alkyl-5-hydroxy-2-(hydroxymethyl)pyridinium (AHHMP), 5,5-bis(hydroxymethyl)furoin (BHMF), 5-(dialkyloxymethyl)-2-furanmethanol (DAMFM), 5-chloromethylfurfural (CMF), 5-alkanoyloxymethylfurfural (AOOMF) and furfuryl alcohol (FFA) has not yet been comprehensively summarized. In order to fill this gap, the latest studies and advancements on the preparation of HMF-based innovative derivatives via various catalytic approaches such as hydrogenation, oxidation, etherification, amination, condensation, halogenation, esterification and decarbonylation are systematically outlined and discussed in this review. Furthermore, a few potential research trends in the future studies are also proposed to provide some useful ideas for the further preparation of HMF-based innovative derivatives in a much more green, simple, efficient and economical way.

281 citations

Journal ArticleDOI
TL;DR: A comprehensive summary of recent contribution of deep eutectic solvents to the processing of lignocellulosic biomass and its derivatives is provided and further discussion about the challenges of the application of DESs in biomass processing is presented.
Abstract: The scientific community has been seeking cost-competitive and green solvents with good dissolving capacity for the valorization of lignocellulosic biomass. At this point, deep eutectic solvents (DESs) are currently emerging as a new class of promising solvents that are generally liquid eutectic mixtures formed by self-association (or hydrogen-bonding interaction) of two or three components. DESs are attractive solvents for the fractionation (or pretreatment) of lignocellulose and the valorization of lignin, owing to the high solubility of lignin in DESs. DESs are also employed as effective media for the modification of cellulose to afford functionalized cellulosic materials, such as cellulose nanocrystals. More interestingly, biomassderived carbohydrates, such as fructose, can be used as one of the constituents of DESs and then dehydrated to 5-hydroxymethylfurfural in high yield. In this review, a comprehensive summary of recent contribution of DESs to the processing of lignocellulosic biomass and its derivatives is provided. Moreover, further discussion about the challenges of the application of DESs in biomass processing is presented.

268 citations

References
More filters
Journal ArticleDOI
TL;DR: The current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs are assembled.
Abstract: As the most important skeletal component in plants, the polysaccharide cellulose is an almost inexhaustible polymeric raw material with fascinating structure and properties. Formed by the repeated connection of D-glucose building blocks, the highly functionalized, linear stiff-chain homopolymer is characterized by its hydrophilicity, chirality, biodegradability, broad chemical modifying capacity, and its formation of versatile semicrystalline fiber morphologies. In view of the considerable increase in interdisciplinary cellulose research and product development over the past decade worldwide, this paper assembles the current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs. New frontiers, including environmentally friendly cellulose fiber technologies, bacterial cellulose biomaterials, and in-vitro syntheses of cellulose are highlighted together with future aims, strategies, and perspectives of cellulose research and its applications.

6,098 citations

Journal ArticleDOI
TL;DR: There have been parallel and collaborative exchanges between academic research and industrial developments since the materials were first reported in 1914, it is demonstrated.
Abstract: In contrast to a recently expressed, and widely cited, view that “Ionic liquids are starting to leave academic labs and find their way into a wide variety of industrial applications”, we demonstrate in this critical review that there have been parallel and collaborative exchanges between academic research and industrial developments since the materials were first reported in 1914 (148 references)

4,865 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids.
Abstract: We report here initial results that demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids. This may enable the application of ionic liquids as alternatives to environmentally undesirable solvents currently used for dissolution of this important bioresource.

4,276 citations

Journal ArticleDOI
09 Feb 2007-Science
TL;DR: Here, the natural resistance of plant cell walls to microbial and enzymatic deconstruction is considered, collectively known as “biomass recalcitrance,” which is largely responsible for the high cost of lignocellulose conversion.
Abstract: Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars for fermentation to biofuels and other biomaterials. Several technologies have been developed during the past 80 years that allow this conversion process to occur, and the clear objective now is to make this process cost-competitive in today's markets. Here, we consider the natural resistance of plant cell walls to microbial and enzymatic deconstruction, collectively known as "biomass recalcitrance." It is this property of plants that is largely responsible for the high cost of lignocellulose conversion. To achieve sustainable energy production, it will be necessary to overcome the chemical and structural properties that have evolved in biomass to prevent its disassembly.

4,035 citations

Journal ArticleDOI
31 Oct 2003-Science
TL;DR: Rogers and Seddon as discussed by the authors reviewed recent progress on developing new ionic liquid solvents for use in chemical synthesis, catalysis, fuel cells, and other applications.
Abstract: Ionic liquids are composed entirely of ions. Because of the wide range of possible binary and ternary ionic liquids, they offer a potentially wide range of solvent properties. In their Perspective, Rogers and Seddon review recent progress on developing new ionic liquid solvents for use in chemical synthesis, catalysis, fuel cells, and other applications. Ionic liquids are considered advantageous not only because of their versatility but also for their "green" credentials, although it is important to remember that not all ionic liquids are environmentally benign. One industrial process has been reported, and others may not be far behind. The authors conclude that in the next decade, ionic liquids are likely to replace conventional solvents in many applications.

3,687 citations