scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses

01 Dec 1998-Immunology Today (Elsevier)-Vol. 19, Iss: 12, pp 568-574
TL;DR: The role played by chemokines and chemokine receptors in positioning T cells for the immune response is reviewed, with a focus on T-cell priming and delayed-type hypersensitivity or allergic reactions.
About: This article is published in Immunology Today.The article was published on 1998-12-01. It has received 923 citations till now. The article focuses on the topics: Priming (immunology) & Chemokine receptor.
Citations
More filters
Journal ArticleDOI
TL;DR: This systematic review and meta-analyses confirmed the findings of a previous study published in “Rhinitis and Asthma: Causes and Prevention, 2nd Ed.” (2015) as well as new findings of “Mechanisms of Respiratory Disease and Allergology,” which confirmed the role of EMTs in the development of these diseases.
Abstract: Authors Jan L. Brozek, MD, PhD – Department of Clinical Epidemiology & Biostatistics and Medicine, McMaster University, Hamilton, Canada Jean Bousquet, MD, PhD – Service des Maladies Respiratoires, Hopital Arnaud de Villeneuve, Montpellier, France, INSERM, CESP U1018, Respiratory and Environmental Epidemiology Team, France, and WHO Collaborating Center for Rhinitis and Asthma Carlos E. Baena-Cagnani, MD – Faculty of Medicine, Catholic University of Cordoba, Cordoba, Argentina Sergio Bonini, MD – Institute of Neurobiology and Molecular Medicine – CNR, Rome, Italy and Department of Medicine, Second University of Naples, Naples, Italy G. Walter Canonica, MD – Allergy & Respiratory Diseases, DIMI, Department of Internal Medicine, University of Genoa, Genoa, Italy Thomas B. Casale, MD – Division of Allergy and Immunology, Department of Medicine, Creighton University, Omaha, Nebraska, USA Roy Gerth van Wijk, MD, PhD – Section of Allergology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands Ken Ohta, MD, PhD – Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan Torsten Zuberbier, MD – Department of Dermatology and Allergy, Charite Universitatsmedizin Berlin, Berlin, Germany Holger J. Schunemann, MD, PhD, MSc – Department of Clinical Epidemiology & Biostatistics and Medicine, McMaster University, Hamilton, Canada

3,368 citations

Journal ArticleDOI
TL;DR: This review addresses the heterogeneity of TCM and TEM, their differentiation stages, and the current models for their generation and maintenance in humans and mice.
Abstract: The memory T cell pool functions as a dynamic repository of antigen-experienced T lymphocytes that accumulate over the lifetime of the individual. Recent studies indicate that memory T lymphocytes contain distinct populations of central memory (TCM) and effector memory (TEM) cells characterized by distinct homing capacity and effector function. This review addresses the heterogeneity of TCM and TEM, their differentiation stages, and the current models for their generation and maintenance in humans and mice.

2,881 citations

Journal ArticleDOI
TL;DR: This review will concentrate on the migration of T cells, which are at the heart of most adaptive immune responses, since T cells respond to pathogens only on direct contact with pathogen-derived antigen.
Abstract: Since the pioneering work of Gowans and colleagues in the 1960s,1,2 much progress has been made in understanding the pivotal role of cell migration in immunity. We now have considerable knowledge of the way in which specialized leukocytes are channeled to distinct target tissues in immune responses and inflammation (Figure 1). This review will concentrate on the migration of T cells, which are at the heart of most adaptive immune responses. Since T cells respond to pathogens only on direct contact with pathogen-derived antigen, they must migrate to sites where antigen is found. The T-cell receptor recognizes a peptide . . .

1,450 citations

Journal ArticleDOI
TL;DR: In this article, expression of CXC chemokine receptor 5 (CXCR5) defines a novel subpopulation of B helper T cells localizing to follicles, based on the characteristic localization within secondary lymphoid organs.
Abstract: Chemokines and their receptors have been identified as major regulators controlling the functional organization of secondary lymphoid organs. Here we show that expression of CXC chemokine receptor 5 (CXCR5), a chemokine receptor required for B cell homing to B cell follicles, defines a novel subpopulation of B helper T cells localizing to follicles. In peripheral blood these cells coexpress CD45RO and the T cell homing CC chemokine receptor 7 (CCR7). In secondary lymphoid organs, CD4(+)CXCR5(+) cells lose expression of CCR7, which allows them to localize to B cell follicles and germinal centers where they express high levels of CD40 ligand (CD40L), a costimulatory molecule required for B cell activation and inducible costimulator (ICOS), a recently identified costimulatory molecule of the CD28 family. Thus, when compared with CD4(+)CD45RO(+)CXCR5(-) cells, CD4(+)CD45RO(+)CXCR5(+) tonsillar T cells efficiently support the production of immunoglobulin (Ig)A and IgG. In contrast, analysis of the memory response revealed that long-lasting memory cells are found within the CD4(+)CD45RO(+)CXCR5(-) population, suggesting that CXCR5(+)CD4 cells represent recently activated effector cells. Based on the characteristic localization within secondary lymphoid organs, we suggest to term these cells "follicular B helper T cells" (T(FH)).

1,353 citations

Journal ArticleDOI
TL;DR: It is shown that a seven-transmembrane receptor, CRTH2, which is preferentially expressed in T helper type 2 (Th2) cells, eosinophils, and basophils in humans, serves as the novel receptor for PGD2.
Abstract: Prostaglandin (PG)D2, which has long been implicated in allergic diseases, is currently considered to elicit its biological actions through the DP receptor (DP). Involvement of DP in the formation of allergic asthma was recently demonstrated with DP-deficient mice. However, proinflammatory functions of PGD2 cannot be explained by DP alone. We show here that a seven-transmembrane receptor, CRTH2, which is preferentially expressed in T helper type 2 (Th2) cells, eosinophils, and basophils in humans, serves as the novel receptor for PGD2. In response to PGD2, CRTH2 induces intracellular Ca2+ mobilization and chemotaxis in Th2 cells in a Gαi-dependent manner. In addition, CRTH2, but not DP, mediates PGD2-dependent cell migration of blood eosinophils and basophils. Thus, PGD2 is likely involved in multiple aspects of allergic inflammation through its dual receptor systems, DP and CRTH2.

1,055 citations


Cites background from "Chemokines and chemokine receptors ..."

  • ...A plausible scenario could be that PGD2 is largely produced by mast cells upon antigen stimulation, inducing local vasodilation via DP, which enhances extravasation of blood leukocytes (26), followed by chemotactic migration of Th2 cells, eosinophils, and basophils via CRTH2 in cooperation with other chemotactic mediators such as CC chemokines TARC and eotaxin (27, 28)....

    [...]

References
More filters
Journal ArticleDOI
19 Mar 1998-Nature
TL;DR: Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis and the realization that these cells are a powerful tool for manipulating the immune system is realized.
Abstract: B and T lymphocytes are the mediators of immunity, but their function is under the control of dendritic cells. Dendritic cells in the periphery capture and process antigens, express lymphocyte co-stimulatory molecules, migrate to lymphoid organs and secrete cytokines to initiate immune responses. They not only activate lymphocytes, they also tolerize T cells to antigens that are innate to the body (self-antigens), thereby minimizing autoimmune reactions. Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis. With knowledge comes the realization that these cells are a powerful tool for manipulating the immune system.

14,532 citations

Journal ArticleDOI
TL;DR: Two types of cloned helper T cells are described, defined primarily by differences in the pattern of lymphokines ynthesized, and the different functions of the two types of cells and their lymphokine synthesis are discussed.
Abstract: Effector functions in the immune system are carried out by a variety of cell types, and as our understanding of the complexity of the system expands, the number of recognized subdivisions of cell types also continues to increase. B lymphocytes, producing antibody, were initially distinguished from T lymphocytes, which provide help for B cells (1, 2). The T-cell population was further divided when surface markers allowed separation of helper cells from cytotoxic cells (3). Although there were persistent reports of heterogeneity in the helper T-cell compartment (reviewed below), only relatively recently were distinct types of helper cells resolved. In this review we describe the differences between two types of cloned helper T cells, defined primarily by differences in the pattern of lymphokines ynthesized, and we also discuss the different functions of the two types of cells and their lymphokines. Patterns of lymphokine synthesis are convenient and explicit markers to describe T-cell subclass differences, and evidence increases that many of the functions of helper T cells are predicted by the functions of the lymphokines that they synthesize after activation by antigen and presenting cells. The separation of many mouse helper T-cell clones into these two distinct types is now well established, but their origin in normal T-cell populations is still not clear. Further divisions of helper T cells may have to be recognized before a complete picture of helper T-cell function can be obtained.

7,814 citations

Journal ArticleDOI
TL;DR: Cultured DCs are as efficient as antigen-specific B cells in presenting tetanus toxoid (TT) to specific T cell clones and their efficiency of antigen presentation can be further enhanced by specific antibodies via FcR- mediated antigen uptake.
Abstract: Using granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin 4 we have established dendritic cell (DC) lines from blood mononuclear cells that maintain the antigen capturing and processing capacity characteristic of immature dendritic cells in vivo. These cells have typical dendritic morphology, express high levels of major histocompatibility complex (MHC) class I and class II molecules, CD1, Fc gamma RII, CD40, B7, CD44, and ICAM-1, and lack CD14. Cultured DCs are highly stimulatory in mixed leukocyte reaction (MLR) and are also capable of triggering cord blood naive T cells. Most strikingly, these DCs are as efficient as antigen-specific B cells in presenting tetanus toxoid (TT) to specific T cell clones. Their efficiency of antigen presentation can be further enhanced by specific antibodies via FcR-mediated antigen uptake. Incubation of these cultured DCs with tumor necrosis factor alpha (TNF-alpha) or soluble CD40 ligand (CD40L) for 24 h results in an increased surface expression of MHC class I and class II molecules, B7, and ICAM-1 and in the appearance of the CD44 exon 9 splice variant (CD44-v9); by contrast, Fc gamma RII is markedly and sometimes completely downregulated. The functional consequences of the short contact with TNF-alpha are in increased T cell stimulatory capacity in MLR, but a 10-fold decrease in presentation of soluble TT and a 100-fold decrease in presentation of TT-immunoglobulin G complexes.

5,381 citations

Journal ArticleDOI
09 Apr 1998-Nature
TL;DR: Over the past ten years, numerous chemokines have been identified as attractants of different types of blood leukocytes to sites of infection and inflammation and are now known to also function as regulatory molecules in leukocyte maturation, traffic and homing of lymphocytes, and the development of lymphoid tissues.
Abstract: Over the past ten years, numerous chemokines have been identified as attractants of different types of blood leukocytes to sites of infection and inflammation. They are produced locally in the tissues and act on leukocytes through selective receptors. Chemokines are now known to also function as regulatory molecules in leukocyte maturation, traffic and homing of lymphocytes, and the development of lymphoid tissues.

2,822 citations