scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Chiral perturbation theory to one loop

01 Nov 1984-Annals of Physics (Academic Press)-Vol. 158, Iss: 1, pp 142-210
TL;DR: In this article, the low energy representation of several Green's functions and form factors and of the na scattering amplitude are calculated in terms of a few constants, which may be identified with the coupling constants of a unique effective low energy Lagrangian.
About: This article is published in Annals of Physics.The article was published on 1984-11-01 and is currently open access. It has received 3277 citations till now. The article focuses on the topics: Pion decay constant & Chiral perturbation theory.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors construct the generating functional of U(3)×U(3), which allows them to calculate the Green functions up to and including terms of order p4 (at fixed radio m quark p 2 ) in terms of a few coupling constants which chiral symmetry leaves undetermined.

2,883 citations

Journal ArticleDOI
TL;DR: Sherpa as mentioned in this paper is a general-purpose tool for the simulation of particle collisions at high-energy colliders and contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models.
Abstract: In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron-hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.

2,099 citations

Journal ArticleDOI
TL;DR: The experimental limits placed on the oblique correction parameters S and T are reviewed and the value of S can be estimated for running and walking technicolor theories are discussed.
Abstract: I will first review the experimental limits placed on the oblique correction parameters S and T. Then, I will discuss how the value of S can be estimated for running and walking technicolor theories.

2,020 citations

Journal ArticleDOI
TL;DR: Sherpa as discussed by the authors is a general-purpose tool for the simulation of particle collisions at high-energy colliders and contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models.
Abstract: In this paper the current release of the Monte Carlo event generator Sherpa, version 1.1, is presented. Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders. It contains a very flexible tree-level matrix-element generator for the calculation of hard scattering processes within the Standard Model and various new physics models. The emission of additional QCD partons off the initial and final states is described through a parton-shower model. To consistently combine multi-parton matrix elements with the QCD parton cascades the approach of Catani, Krauss, Kuhn and Webber is employed. A simple model of multiple interactions is used to account for underlying events in hadron--hadron collisions. The fragmentation of partons into primary hadrons is described using a phenomenological cluster-hadronisation model. A comprehensive library for simulating tau-lepton and hadron decays is provided. Where available form-factor models and matrix elements are used, allowing for the inclusion of spin correlations; effects of virtual and real QED corrections are included using the approach of Yennie, Frautschi and Suura.

1,911 citations


Cites methods from "Chiral perturbation theory to one l..."

  • ...The corresponding decays are described by form factors, which in SHERPA can be parametrised according to the following models: • Kühn-Santamaŕıa(KS) [113] parametrisation, • Resonance Chiral Theory (RχT) [114]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the nuclear forces can be derived using effective chiral Lagrangians consistent with the symmetries of QCD, and the status of the calculations for two and three nucleon forces and their applications in few-nucleon systems are reviewed.
Abstract: Nuclear forces can be systematically derived using effective chiral Lagrangians consistent with the symmetries of QCD. I review the status of the calculations for two- and three-nucleon forces and their applications in few-nucleon systems. I also address issues like the quark mass dependence of the nuclear forces and resonance saturation for four-nucleon operators.

1,455 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that the extraction of gauge invariants from a formally gauge invariant theory is ensured if one employs methods of solution that involve only gauge covariant quantities.
Abstract: This paper is based on the elementary remark that the extraction of gauge invariant results from a formally gauge invariant theory is ensured if one employs methods of solution that involve only gauge covariant quantities. We illustrate this statement in connection with the problem of vacuum polarization by a prescribed electromagnetic field. The vacuum current of a charged Dirac field, which can be expressed in terms of the Green's function of that field, implies an addition to the action integral of the electromagnetic field. Now these quantities can be related to the dynamical properties of a "particle" with space-time coordinates that depend upon a proper-time parameter. The proper-time equations of motion involve only electromagnetic field strengths, and provide a suitable gauge invariant basis for treating problems. Rigorous solutions of the equations of motion can be obtained for a constant field, and for a plane wave field. A renormalization of field strength and charge, applied to the modified lagrange function for constant fields, yields a finite, gauge invariant result which implies nonlinear properties for the electromagnetic field in the vacuum. The contribution of a zero spin charged field is also stated. After the same field strength renormalization, the modified physical quantities describing a plane wave in the vacuum reduce to just those of the maxwell field; there are no nonlinear phenomena for a single plane wave, of arbitrary strength and spectral composition. The results obtained for constant (that is, slowly varying fields), are then applied to treat the two-photon disintegration of a spin zero neutral meson arising from the polarization of the proton vacuum. We obtain approximate, gauge invariant expressions for the effective interaction between the meson and the electromagnetic field, in which the nuclear coupling may be scalar, pseudoscalar, or pseudovector in nature. The direct verification of equivalence between the pseudoscalar and pseudovector interactions only requires a proper statement of the limiting processes involved. For arbitrarily varying fields, perturbation methods can be applied to the equations of motion, as discussed in Appendix A, or one can employ an expansion in powers of the potential vector. The latter automatically yields gauge invariant results, provided only that the proper-time integration is reserved to the last. This indicates that the significant aspect of the proper-time method is its isolation of divergences in integrals with respect to the proper-time parameter, which is independent of the coordinate system and of the gauge. The connection between the proper-time method and the technique of "invariant regularization" is discussed. Incidentally, the probability of actual pair creation is obtained from the imaginary part of the electromagnetic field action integral. Finally, as an application of the Green's function for a constant field, we construct the mass operator of an electron in a weak, homogeneous external field, and derive the additional spin magnetic moment of $\frac{\ensuremath{\alpha}}{2\ensuremath{\pi}}$ magnetons by means of a perturbation calculation in which proper-mass plays the customary role of energy.

5,579 citations

Journal ArticleDOI
TL;DR: In this paper, a superconductive solution describing the proton-neutron doublet is obtained from a nonlinear spinor field Lagrangian, and the pions of finite mass are found as nucleon-antinucleon bound states by introducing a small bare mass into the Lagrangians which otherwise possesses a certain type of the ∆-ensuremath{gamma{5}$ invariance.
Abstract: Continuing the program developed in a previous paper, a "superconductive" solution describing the proton-neutron doublet is obtained from a nonlinear spinor field Lagrangian. We find the pions of finite mass as nucleon-antinucleon bound states by introducing a small bare mass into the Lagrangian which otherwise possesses a certain type of the ${\ensuremath{\gamma}}_{5}$ invariance. In addition, heavier mesons and two-nucleon bound states are obtained in the same approximation. On the basis of numerical mass relations, it is suggested that the bare nucleon field is similar to the electron-neutrino field, and further speculations are made concerning the complete description of the baryons and leptons.

3,923 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic study is made of the non-perturbative effects in quantum chromodynamics, where the basic object is the two-point functions of various currents and the terms of this series are shown to be of two distinct types.

3,874 citations

Journal ArticleDOI
TL;DR: In this article, the axial-vector vertex in spinor electrodynamics has anomalous properties which differ with those found by the formal manipulation of field equations, and the divergence of axial vector current is not the usual expression calculated from the field equations.
Abstract: Working within the framework of perturbation theory, we show that the axial-vector vertex in spinor electrodynamics has anomalous properties which disagree with those found by the formal manipulation of field equations. Specifically, because of the presence of closed-loop "triangle diagrams," the divergence of axial-vector current is not the usual expression calculated from the field equations, and the axial-vector current does not satisfy the usual Ward identity. One consequence is that, even after the external-line wave-function renormalizations are made, the axial-vector vertex is still divergent in fourth- (and higher-) order perturbation theory. A corollary is that the radiative corrections to ${\ensuremath{ u}}_{l}l$ elastic scattering in the local current-current theory diverge in fourth (and higher) order. A second consequence is that, in massless electrodynamics, despite the fact that the theory is invariant under ${\ensuremath{\gamma}}_{5}$ tranformations, the axial-vector current is not conserved. In an Appendix we demonstrate the uniqueness of the triangle diagrams, and discuss a possible connection between our results and the ${\ensuremath{\pi}}^{0}\ensuremath{\rightarrow}2\ensuremath{\gamma}$ and $\ensuremath{\eta}\ensuremath{\rightarrow}2\ensuremath{\gamma}$ decays. In particular, we argue that as a result of triangle diagrams, the equations expressing partial conservation of axial-vector current (PCAC) for the neutral members of the axial-vector-current octet must be modified in a well-defined manner, which completely alters the PCAC predictions for the ${\ensuremath{\pi}}^{0}$ and the $\ensuremath{\eta}$ two-photon decays.

3,232 citations

Journal ArticleDOI
TL;DR: In this paper, the authors construct the generating functional of U(3)×U(3), which allows them to calculate the Green functions up to and including terms of order p4 (at fixed radio m quark p 2 ) in terms of a few coupling constants which chiral symmetry leaves undetermined.

2,883 citations