scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution

TL;DR: In this paper, a halogen-chlorine (Cl)-anion doping strategy was proposed to boost the oxygen evolution reaction (OER) activity of perovskite oxides.
About: This article is published in Journal of Energy Chemistry.The article was published on 2021-01-01. It has received 63 citations till now. The article focuses on the topics: Oxygen evolution & Perovskite (structure).
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of recent advances in metal oxide-based electrocatalysts for hydrogen evolution reaction (HER) can be found in this paper, with special emphasis on designed strategies for promoting performance and property-activity correlation.
Abstract: Hydrogen production from electrochemical water splitting represents a highly promising technology for sustainable energy storage, but its widespread implementation heavily relies on the development of high-performance and cost-effective hydrogen evolution reaction (HER) electrocatalysts. Metal oxides, an important family of functional materials with diverse compositions and structures, were traditionally believed inactive towards HER. Encouragingly, the continuous breakthroughs and significant progress in recent years (mainly from 2015 onwards) make engineered metal oxides emerge as promising candidates for HER electrocatalysis. In this article, we present a comprehensive review of recent advances in metal oxide-based electrocatalysts for HER. We start with a brief description of some key fundamental concepts of HER, such as mechanisms, computational activity descriptors, and experimental parameters used to evaluate catalytic performance. This is followed by a overview of various types of metal oxide-based HER electrocatalysts reported so far, including single transition metal oxides, spinel oxides, perovskite oxides, metal (oxy)hydroxides, specially-structured metal oxides and oxide-containing hybrids, with special emphasis on designed strategies for promoting performance and property–activity correlation. Finally, some concluding remarks and perspectives about future opportunities of this exciting field are provided.

294 citations

Journal ArticleDOI
TL;DR: In this article, an extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria.
Abstract: Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.

92 citations

Journal ArticleDOI
TL;DR: In this paper , the role and impacts of OVs in the catalysis of gaseous pollutants are illustrated and methods for regulating the generation of oxygen vacancies in catalysts are summarised.

43 citations

Journal ArticleDOI
TL;DR: ZnCo2S4/CoZn13 composite catalysts were obtained in this article , which achieved a cell voltage of 1.61 V at 50 mA cm−2.

41 citations

Journal ArticleDOI
TL;DR: CeO2 decorated CoOx rod-like hybrid, supported onto holey reduced graphene (CoOx/Ce O2/RGO) composite, was fabricated via a surfactant-assisted route Its corresponding electrocatalytic performance towards oxygen reduction/evolution reactions (ORR and OER) was systematically investigated in alkaline electrolyte as discussed by the authors.

33 citations

References
More filters
Journal ArticleDOI
TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Abstract: We present an efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set. In the first part the application of Pulay's DIIS method (direct inversion in the iterative subspace) to the iterative diagonalization of large matrices will be discussed. Our approach is stable, reliable, and minimizes the number of order ${\mathit{N}}_{\mathrm{atoms}}^{3}$ operations. In the second part, we will discuss an efficient mixing scheme also based on Pulay's scheme. A special ``metric'' and a special ``preconditioning'' optimized for a plane-wave basis set will be introduced. Scaling of the method will be discussed in detail for non-self-consistent and self-consistent calculations. It will be shown that the number of iterations required to obtain a specific precision is almost independent of the system size. Altogether an order ${\mathit{N}}_{\mathrm{atoms}}^{2}$ scaling is found for systems containing up to 1000 electrons. If we take into account that the number of k points can be decreased linearly with the system size, the overall scaling can approach ${\mathit{N}}_{\mathrm{atoms}}$. We have implemented these algorithms within a powerful package called VASP (Vienna ab initio simulation package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semiconducting surfaces, phonons in simple metals, transition metals, and semiconductors) and turned out to be very reliable. \textcopyright{} 1996 The American Physical Society.

81,985 citations

Journal ArticleDOI
Peter E. Blöchl1
TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Abstract: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The method allows high-quality first-principles molecular-dynamics calculations to be performed using the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function. The augmentation procedure is generalized in that partial-wave expansions are not determined by the value and the derivative of the envelope function at some muffin-tin radius, but rather by the overlap with localized projector functions. The pseudopotential approach based on generalized separable pseudopotentials can be regained by a simple approximation.

61,450 citations

Journal ArticleDOI
TL;DR: In this article, the authors improved the description of both electron energy loss spectra and parameters characterizing the structural stability of the material compared with local spin density functional theory by taking better account of electron correlations in the $3d$ shell of metal ions in nickel oxide.
Abstract: We demonstrate how by taking better account of electron correlations in the $3d$ shell of metal ions in nickel oxide it is possible to improve the description of both electron energy loss spectra and parameters characterizing the structural stability of the material compared with local spin density functional theory.

10,045 citations

Journal ArticleDOI
16 Aug 2012-Nature
TL;DR: This Perspective provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
Abstract: Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty–first century must also be sustainable. Solar and water–based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.

7,721 citations

Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations