scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cholinergic system during the progression of Alzheimer's disease: therapeutic implications.

TL;DR: Drugs treating the multiple pathologies and clinical symptoms in AD (e.g., M1 cholinoceptor and/or galaninergic drugs) should be considered for a more comprehensive treatment approach for cholinergic dysfunction.
Abstract: Alzheimer's disease (AD) is characterized by a progressive phenotypic downregulation of markers within cholinergic basal forebrain (CBF) neurons, frank CBF cell loss and reduced cortical choline acetyltransferase activity associated with cognitive decline. Delaying CBF neurodegeneration or minimizing its consequences is the mechanism of action for most currently available drug treatments for cognitive dysfunction in AD. Growing evidence suggests that imbalances in the expression of NGF, its precursor proNGF and the high (TrkA) and low (p75(NTR)) affinity NGF receptors are crucial factors underlying CBF dysfunction in AD. Drugs that maintain a homeostatic balance between TrkA and p75(NTR) may slow the onset of AD. A NGF gene therapy trial reduced cognitive decline and stimulated cholinergic fiber growth in humans with mild AD. Drugs treating the multiple pathologies and clinical symptoms in AD (e.g., M1 cholinoceptor and/or galaninergic drugs) should be considered for a more comprehensive treatment approach for cholinergic dysfunction.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Observed changes in the expression of NGF, its precursor proNGF, the high and low NGF receptors, trkA and p75NTR, respectively, changes in acetylcholine release, high-affinity choline uptake, as well as alterations in muscarinic and nicotinic acetyl choline receptor expression may contribute to the cholinergic dysfunction.

892 citations

Journal ArticleDOI
01 Jul 2018-Brain
TL;DR: The weight of the evidence supports the continued value of cholinergic drugs as a standard, cornerstone pharmacological approach in Alzheimer's disease, particularly as the authors look ahead to future combination therapies that address symptoms as well as disease progression.
Abstract: Cholinergic synapses are ubiquitous in the human central nervous system. Their high density in the thalamus, striatum, limbic system, and neocortex suggest that cholinergic transmission is likely to be critically important for memory, learning, attention and other higher brain functions. Several lines of research suggest additional roles for cholinergic systems in overall brain homeostasis and plasticity. As such, the brain's cholinergic system occupies a central role in ongoing research related to normal cognition and age-related cognitive decline, including dementias such as Alzheimer's disease. The cholinergic hypothesis of Alzheimer's disease centres on the progressive loss of limbic and neocortical cholinergic innervation. Neurofibrillary degeneration in the basal forebrain is believed to be the primary cause for the dysfunction and death of forebrain cholinergic neurons, giving rise to a widespread presynaptic cholinergic denervation. Cholinesterase inhibitors increase the availability of acetylcholine at synapses in the brain and are one of the few drug therapies that have been proven clinically useful in the treatment of Alzheimer's disease dementia, thus validating the cholinergic system as an important therapeutic target in the disease. This review includes an overview of the role of the cholinergic system in cognition and an updated understanding of how cholinergic deficits in Alzheimer's disease interact with other aspects of disease pathophysiology, including plaques composed of amyloid-β proteins. This review also documents the benefits of cholinergic therapies at various stages of Alzheimer's disease and during long-term follow-up as visualized in novel imaging studies. The weight of the evidence supports the continued value of cholinergic drugs as a standard, cornerstone pharmacological approach in Alzheimer's disease, particularly as we look ahead to future combination therapies that address symptoms as well as disease progression.

821 citations

Journal ArticleDOI
TL;DR: This review will focus on the current epidemiological evidence of arsenic neurotoxicity in children and adults, with emphasis on cognitive dysfunction, including learning and memory deficits and mood disorders, and new studies focusing on therapeutic strategies to combat arsenic toxicity including the use of selenium and zinc.
Abstract: Arsenic toxicity is a worldwide health concern as several millions of people are exposed to this toxicant via drinking water, and exposure affects almost every organ system in the body including the brain. Recent studies have shown that even low concentrations of arsenic impair neurological function, particularly in children. This review will focus on the current epidemiological evidence of arsenic neurotoxicity in children and adults, with emphasis on cognitive dysfunction, including learning and memory deficits and mood disorders. We provide a cohesive synthesis of the animal studies that have focused on neural mechanisms of dysfunction after arsenic exposure including altered epigenetics; hippocampal function; glucocorticoid and hypothalamus-pituitary-adrenal axis (HPA) pathway signaling; glutamatergic, cholinergic and monoaminergic signaling; adult neurogenesis; and increased Alzheimer’s-associated pathologies. Finally, we briefly discuss new studies focusing on therapeutic strategies to combat arsenic toxicity including the use of selenium and zinc.

382 citations

Journal ArticleDOI
TL;DR: The functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases, neurodevelopmental disorders, and neuropathic pain are discussed.

373 citations

Journal ArticleDOI
TL;DR: Techniques providing earlier diagnosis, such as cerebrospinal fluid biomarkers and amyloid positron emission tomography neuroimaging, are key to testing this theory in clinical trials and results from trials of agents such as aducanumab are encouraging but must also be interpreted with caution.
Abstract: Despite the significant public health issue that it poses, only five medical treatments have been approved for Alzheimer's disease (AD) and these act to control symptoms rather than alter the course of the disease. Studies of potential disease-modifying therapy have generally been undertaken in patients with clinically detectable disease, yet evidence suggests that the pathological changes associated with AD begin several years before this. It is possible that pharmacological therapy may be beneficial in this pre-clinical stage before the neurodegenerative process is established. Techniques providing earlier diagnosis, such as cerebrospinal fluid biomarkers and amyloid positron emission tomography neuroimaging, are key to testing this theory in clinical trials. Recent results from trials of agents such as aducanumab are encouraging but must also be interpreted with caution. Such medicines could potentially delay the onset of dementia and would therefore markedly reduce its prevalence. However, we currently remain a good distance away from clinically available disease-modifying therapy.

329 citations

References
More filters
Journal ArticleDOI
Ronald C. Petersen1
TL;DR: It is suggested that the diagnosis of mild cognitive impairment can be made in a fashion similar to the clinical diagnoses of dementia and AD, and an algorithm is presented to assist the clinician in identifying subjects and subclassifying them into the various types of MCI.
Abstract: The concept of cognitive impairment intervening between normal ageing and very early dementia has been in the literature for many years. Recently, the construct of mild cognitive impairment (MCI) has been proposed to designate an early, but abnormal, state of cognitive impairment. MCI has generated a great deal of research from both clinical and research perspectives. Numerous epidemiological studies have documented the accelerated rate of progression to dementia and Alzheimer's disease (AD) in MCI subjects and certain predictor variables appear valid. However, there has been controversy regarding the precise definition of the concept and its implementation in various clinical settings. Clinical subtypes of MCI have been proposed to broaden the concept and include prodromal forms of a variety of dementias. It is suggested that the diagnosis of MCI can be made in a fashion similar to the clinical diagnoses of dementia and AD. An algorithm is presented to assist the clinician in identifying subjects and subclassifying them into the various types of MCI. By refining the criteria for MCI, clinical trials can be designed with appropriate inclusion and exclusion restrictions to allow for the investigation of therapeutics tailored for specific targets and populations.

6,382 citations

Journal ArticleDOI
TL;DR: A multidisciplinary, international group of experts discussed the current status and future directions of MCI, with regard to clinical presentation, cognitive and functional assessment, and the role of neuroimaging, biomarkers and genetics.
Abstract: The First Key Symposium was held in Stockholm, Sweden, 2-5 September 2003. The aim of the symposium was to integrate clinical and epidemiological perspectives on the topic of Mild Cognitive Impairment (MCI). A multidisciplinary, international group of experts discussed the current status and future directions of MCI, with regard to clinical presentation, cognitive and functional assessment, and the role of neuroimaging, biomarkers and genetics. Agreement on new perspectives, as well as recommendations for management and future research were discussed by the international working group. The specific recommendations for the general MCI criteria include the following: (i) the person is neither normal nor demented; (ii) there is evidence of cognitive deterioration shown by either objectively measured decline over time and/or subjective report of decline by self and/or informant in conjunction with objective cognitive deficits; and (iii) activities of daily living are preserved and complex instrumental functions are either intact or minimally impaired.

4,206 citations

Journal ArticleDOI
TL;DR: Both linear regressions and multivariate analyses correlating three global neuropsychological tests with a number of structural and neurochemical measurements performed on a prospective series of patients with Alzheimer's disease and 9 neuropathologically normal subjects reveal very powerful correlations with all three psychological assays.
Abstract: We present here both linear regressions and multivariate analyses correlating three global neuropsychological tests with a number of structural and neurochemical measurements performed on a prospective series of 15 patients with Alzheimer's disease and 9 neuropathologically normal subjects. The statistical data show only weak correlations between psychometric indices and plaques and tangles, but the density of neocortical synapses measured by a new immunocytochemical/densitometric technique reveals very powerful correlations with all three psychological assays. Multivariate analysis by stepwise regression produced a model including midfrontal and inferior parietal synapse density, plus inferior parietal plaque counts with a correlation coefficient of 0.96 for Mattis's Dementia Rating Scale. Plaque density contributed only 26% of that strength.

4,020 citations

Journal ArticleDOI
01 Oct 1989-Neuron
TL;DR: Antisera raised against synthetic peptides corresponding to these different human tau isoforms demonstrate that multiple tau protein isoforms are incorporated into the neurofibrillary tangles of Alzheimer's disease.

2,255 citations