scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cisplatin in cancer therapy: molecular mechanisms of action

05 Oct 2014-European Journal of Pharmacology (Eur J Pharmacol)-Vol. 740, pp 364-378
TL;DR: This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers.
About: This article is published in European Journal of Pharmacology.The article was published on 2014-10-05 and is currently open access. It has received 3467 citations till now. The article focuses on the topics: Cisplatin & Carboplatin.
Citations
More filters
Journal ArticleDOI
TL;DR: This introductory review will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue.
Abstract: Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.

954 citations

Journal ArticleDOI
TL;DR: The physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds are described.
Abstract: Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.

892 citations

Journal ArticleDOI
TL;DR: This article highlights a systematic description on cisplatin which includes a brief history, synthesis, action mechanism, resistance, uses, side effects and modulation of side effects.

803 citations


Cites background from "Cisplatin in cancer therapy: molecu..."

  • ...Again p53 actives PUMA [72], PIDD [73] and MAPK protein family [12] which are responsible for cell apoptosis....

    [...]

  • ...which makes higher sensitivity to cisplatin [12]....

    [...]

  • ...is used for wide range of solid cancers such as testicular, ovarian, bladder, lung, cervical, head and neck cancer, gastric cancer and some other cancers [11,12,285]....

    [...]

  • ...They can react with a number of nucleophiles like sulfhydryl groups of protein and nitrogen donor atoms of nucleic acids etc [12] because water is better leaving group than chloride [49]....

    [...]

  • ...p53 causes apoptosis directly by different mechanisms like: Degradation of FLIP (flice-like inhibitory protein), direct binding and counteracting the antiapoptotic function of Bcl-xL (B-cell lymphoma-extra-large), over expression of PTEN (phosphatase and tensin homolog) [12,71]....

    [...]

Journal ArticleDOI
TL;DR: The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR).
Abstract: Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%–5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli. CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%); inherited (5%) and familial (25%). The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-β, TP53), and mutations; in particular, genes such as c-MYC, KRAS, BRAF, PIK3CA, PTEN, SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR). Besides traditional chemotherapy, alternative therapies (such as agarose tumour macrobeads, anti-inflammatory drugs, probiotics, and gold-based drugs) are currently being studied to increase treatment effectiveness and reduce side effects.

762 citations

Journal ArticleDOI
TL;DR: This review has endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many Chemotherapeutic regimens.
Abstract: While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we a...

389 citations

References
More filters
Journal ArticleDOI
TL;DR: There are striking variations in the risk of different cancers by geographic area, most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.
Abstract: Estimates of the worldwide incidence, mortality and prevalence of 26 cancers in the year 2002 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. The results are presented here in summary form, including the geographic variation between 20 large "areas" of the world. Overall, there were 10.9 million new cases, 6.7 million deaths, and 24.6 million persons alive with cancer (within three years of diagnosis). The most commonly diagnosed cancers are lung (1.35 million), breast (1.15 million), and colorectal (1 million); the most common causes of cancer death are lung cancer (1.18 million deaths), stomach cancer (700,000 deaths), and liver cancer (598,000 deaths). The most prevalent cancer in the world is breast cancer (4.4 million survivors up to 5 years following diagnosis). There are striking variations in the risk of different cancers by geographic area. Most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.

17,730 citations

Journal ArticleDOI
TL;DR: The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity.
Abstract: methods Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. results A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients.

16,653 citations

Journal ArticleDOI
TL;DR: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up, and a benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years.
Abstract: BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS: Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS: Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING: EORTC, NCIC, Nelia and Amadeo Barletta Foundation, Schering-Plough.

6,161 citations

Journal ArticleDOI
TL;DR: The ability to predict and circumvent drug resistance is likely to improve chemotherapy, and it has become apparent that resistance exists against every effective drug, even the authors' newest agents.
Abstract: Chemotherapeutics are the most effective treatment for metastatic tumours. However, the ability of cancer cells to become simultaneously resistant to different drugs--a trait known as multidrug resistance--remains a significant impediment to successful chemotherapy. Three decades of multidrug-resistance research have identified a myriad of ways in which cancer cells can elude chemotherapy, and it has become apparent that resistance exists against every effective drug, even our newest agents. Therefore, the ability to predict and circumvent drug resistance is likely to improve chemotherapy.

5,105 citations

Journal ArticleDOI
01 Mar 2001-Nature
TL;DR: Recent studies have begun to shed light on the physiological functions of MAPK cascades in the control of gene expression, cell proliferation and programmed cell death.
Abstract: Mitogen-activated protein kinases (MAPKs) are important signal transducing enzymes, unique to eukaryotes, that are involved in many facets of cellular regulation. Initial research concentrated on defining the components and organization of MAPK signalling cascades, but recent studies have begun to shed light on the physiological functions of these cascades in the control of gene expression, cell proliferation and programmed cell death.

4,973 citations


"Cisplatin in cancer therapy: molecu..." refers background in this paper

  • ...Mitogen activated protein kinases are a family of structurally related serine/threonine protein kinases that coordinate various extra cellular signals to regulate cell growth and survival (Chang and Karin, 2001;Johnson and Lapadat, 2002;Marshall, 1995)....

    [...]

  • ...…and mitogen-activated protein kinase (MAPK) Mitogen activated protein kinases are a family of structurally related serine/threonine protein kinases that coordinate various extra cellular signals to regulate cell growth and survival (Chang and Karin, 2001;Johnson and Lapadat, 2002;Marshall, 1995)....

    [...]